Patents by Inventor Subramanian S. Iyer

Subramanian S. Iyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10342060
    Abstract: In a communication system where a primary cell is controlled by a first base station and a secondary cell is controlled by a second, different base station, flow control is performed between the primary cell and the secondary cell for data for a radio link control layer. According to the flow control, the data for the radio link control layer is communicated between the first and second base stations using a link between the first and second base stations. Flow control may be performed between the primary cell and the secondary cell by dynamically controlling a depth of queued radio link control data in the secondary cell for one or more UEs based on one or more factors, e.g., current/future loading of secondary cell, peak theoretical throughput for a UE in the secondary cell, and/or a UE's current channel quality information. Apparatus, methods, and computer program products are disclosed.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: July 2, 2019
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Subramanian S. Iyer, Mark Marsan, Kirk Ingemunson, Apurv Mathur
  • Publication number: 20190155999
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 23, 2019
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Patent number: 10262119
    Abstract: An authenticating service of a chip having an intrinsic identifier (ID) is provided. The authenticating device includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Publication number: 20180189233
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 5, 2018
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arhur, John E. Barth, JR., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20180136846
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Publication number: 20180124851
    Abstract: In a communication system where a primary cell is controlled by a first base station and a secondary cell is controlled by a second, different base station, flow control is performed between the primary cell and the secondary cell for data for a radio link control layer. According to the flow control, the data for the radio link control layer is communicated between the first and second base stations using a link between the first and second base stations. Flow control may be performed between the primary cell and the secondary cell by dynamically controlling a depth of queued radio link control data in the secondary cell for one or more UEs based on one or more factors, e.g., current/future loading of secondary cell, peak theoretical throughput for a UE in the secondary cell, and/or a UE's current channel quality information. Apparatus, methods, and computer program products are disclosed.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Subramanian S. Iyer, Mark Marsan, Kirk Ingemunson, Apurv Mathur
  • Patent number: 9940302
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9886193
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Patent number: 9888513
    Abstract: In a communication system where a primary cell is controlled by a first base station and a secondary cell is controlled by a second, different base station, flow control is performed between the primary cell and the secondary cell for data for a radio link control layer. According to the flow control, the data for the radio link control layer is communicated between the first and second base stations using a link between the first and second base stations. Flow control may be performed between the primary cell and the secondary cell by dynamically controlling a depth of queued radio link control data in the secondary cell for one or more UEs based on one or more factors, e.g., current/future loading of secondary cell, peak theoretical throughput for a UE in the secondary cell, and/or a UE's current channel quality information. Apparatus, methods, and computer program products are disclosed.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: February 6, 2018
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Subramanian S. Iyer, Mark Marsan, Kirk Ingemunson, Apurv Mathur
  • Publication number: 20170329575
    Abstract: A fine-grained analog memory device includes: 1) a charge-trapping transistor including a gate and a high-k gate dielectric; and 2) a pulse generator connected to the gate and configured to apply a positive or negative pulse to the gate to change an amount of charges trapped in the high-k gate dielectric.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 16, 2017
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Xuefeng Gu, Subramanian S. Iyer
  • Patent number: 9792251
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: October 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9748114
    Abstract: A semiconductor device includes an epitaxy layer formed on semiconductor substrate, a device layer formed on the epitaxy layer, a trench formed within the semiconductor substrate and including a dielectric layer forming a liner within the trench and a conductive core forming a through-silicon via conductor, and a deep trench isolation structure formed within the substrate and surrounding the through-silicon via conductor. A region of the epitaxy layer formed between the through-silicon via conductor and the deep trench isolation structure is electrically isolated from any signals applied to the semiconductor device, thereby decreasing parasitic capacitance.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Subramanian S. Iyer, Pranita Kerber, Ali Khakifirooz
  • Publication number: 20170220784
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Patent number: 9690927
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: June 27, 2017
    Assignee: International Business Machines Corporation
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Publication number: 20170124024
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Application
    Filed: January 6, 2017
    Publication date: May 4, 2017
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, JR., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9588937
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9543229
    Abstract: The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a 3D integration scheme for multiple semiconductor wafers using an arrangement of intra-wafer through silicon vias (TSVs) to electrically connect the front side of a first integrated circuit (IC) chip to large back side wiring on the back side of the first IC chip and inter-wafer TSVs to electrically connect the first IC chip to a second IC chip.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Pooja R. Batra, John W. Golz, Subramanian S. Iyer, Douglas C. La Tulipe, Jr., Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9536809
    Abstract: The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a 3D integration scheme for multiple semiconductor wafers using an arrangement of intra-wafer through silicon vias (TSVs) to electrically connect the front side of a first integrated circuit (IC) chip to large back side wiring on the back side of the first IC chip and inter-wafer TSVs to electrically connect the first IC chip to a second IC chip.
    Type: Grant
    Filed: August 30, 2015
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Pooja R. Batra, John W. Golz, Subramanian S. Iyer, Douglas C. La Tulipe, Jr., Spyridon Skordas, Kevin R. Winstel
  • Publication number: 20160334991
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Patent number: 9466538
    Abstract: A method of improving chip-to-chip alignment accuracy for circuitry-including wafer-to-wafer bonding. The method comprises providing separate stages for holding first and second circuitry-including wafers, each stage including a plurality of adjacent thermal actuators arranged in an array integrated with the stage; determining planar distortions of a bonding surface of the first and second circuitry-including wafers; mapping the planar distortions for each wafer based on the relative planar distortions thereon; deducing necessary local thermal expansion measurements for each wafer to compensate for the relative distortions based on the mapping; translating the thermal expansion measurements into a non-uniform wafer temperature profile model and a local heat flux profile model for each wafer; aligning the first and second wafers; and bonding the first and second wafers together.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Spyridon Skordas, Subramanian S Iyer, Donald Francis Canaperi, Shidong Li, Wei Lin