Patents by Inventor Suddhasattwa NAD

Suddhasattwa NAD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200258975
    Abstract: Embodiments disclosed herein include electronic packages with embedded magnetic materials and methods of forming such packages. In an embodiment, the electronic package comprises a package substrate, where the package substrate comprises a plurality of dielectric layers. In an embodiment a plurality of passive components is located in a first dielectric layer of the plurality of dielectric layers. In an embodiment, first passive components of the plurality of passive components each comprise a first magnetic material, and second passive components of the plurality of passive components each comprise a second magnetic material. In an embodiment, a composition of the first magnetic material is different than a composition of the second magnetic material.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 13, 2020
    Inventors: Rengarajan SHANMUGAM, Suddhasattwa NAD, Darko GRUJICIC, Srinivas PIETAMBARAM
  • Publication number: 20200251332
    Abstract: Embodiments include package substrates and a method of forming the package substrates. A package substrate includes a self-assembled monolayer (SAM) layer over a first dielectric, where the SAM layer includes first end groups and second end groups. The second end groups may include a plurality of hydrophobic moieties. The package substrate also includes a conductive pad on the first dielectric, where the conductive pad has a bottom surface, a top surface, and a sidewall, and where the SAM layer surrounds and contacts a surface of the sidewall of the conductive pad. The hydrophobic moieties may include fluorinated moieties. The conductive pad includes a copper material, where the top surface of the conductive pad has a surface roughness that is approximately equal to a surface roughness of the as-plated copper material. The SAM layer may have a thickness that is approximately 0.1 nm to 20 nm.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 6, 2020
    Inventors: Suddhasattwa NAD, Roy DITTLER, Darko GRUJICIC, Marcel WALL, Rahul MANEPALLI
  • Publication number: 20200245472
    Abstract: Embodiments of the present disclosure describe techniques for providing an apparatus with a substrate provided with plasma treatment. In some instances, the apparatus may include a substrate with a surface that comprises a metal layer to provide signal routing in the apparatus. The metal layer may be provided in response to a plasma treatment of the surface with a functional group containing a gas (e.g., nitrogen-based gas), to provide absorption of a transition metal catalyst into the surface, and subsequent electroless plating of the surface with a metal. The transition metal catalyst is to enhance electroless plating of the surface with the metal. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 22, 2017
    Publication date: July 30, 2020
    Inventors: Darko GRUJICIC, Rengarajan SHANMUGAM, Sandeep GAAN, Adrian BAYRAKTAROGLU, Roy DITTLER, Ke LIU, Suddhasattwa NAD, Marcel A. WALL, Rahul N. MANEPALLI, Ravindra V. TANIKELLA
  • Publication number: 20200236795
    Abstract: Techniques and mechanisms for providing anisotropic etching of a metallization layer of a substrate. In an embodiment, the metallization layer includes grains of a conductor, wherein a first average grain size and a second average grain size correspond, respectively, to a first sub-layer and a second sub-layer of the metallization layer. The first sub-layer and the second sub-layer each span at least 5% of a thickness of the metallization layer. A difference between the first average grain size and the second average grain size is at least 10% of the first average grain size. In another embodiment, a first condition of metallization processing contributes to grains of the first sub-layer being relatively large, wherein an alternative condition of metallization processing contributes to grains of the second sub-layer being relatively small. A grain size gradient across a thickness of the metallization layer facilitates etching processes being anisotropic.
    Type: Application
    Filed: September 27, 2017
    Publication date: July 23, 2020
    Applicant: INTEL CORPORATION
    Inventors: Jeremy Ecton, Nicholas Haehn, Oscar Ojeda, Arnab Roy, Timothy White, Suddhasattwa Nad, Hsin-Wei Wang
  • Publication number: 20200205279
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a substrate layer having a surface; a first conductive trace having a first thickness on the surface of the substrate layer; and a second conductive trace having a second thickness on the surface of the substrate layer, wherein the second thickness is different from the first thickness. In some embodiments, the first conductive trace and the second conductive trace have rectangular cross-sections.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Applicant: Intel Corporation
    Inventors: Jeremy Ecton, Aleksandar Aleksov, Suddhasattwa Nad, Kristof Kuwawi Darmawikarta, Vahidreza Parichehreh, Veronica Aleman Strong, Xiaoying Guo
  • Publication number: 20200105685
    Abstract: Embodiments include one or more air core inductors (ACIs) and a method of forming the ACIs. The ACI includes a first inductor loop on a substrate. The first inductor loop has a first line and a second line. The first line has a first thickness that is greater than a second thickness of the second line. The ACI also includes a dielectric over the substrate and the first and second lines. The first line has a top surface above a top surface of the second line. The ACI further includes a second inductor loop on the dielectric and the first inductor loop. The second inductor loop has is coupled to the top surface of the first line of the first inductor loop. The first inductor loop may also have a third thickness, where the third thickness is the distance between the top surfaces of the first and second line.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Jeremy ECTON, Suddhasattwa NAD, Kristof DARMAWIKARTA, Yonggang LI, Xiaoying GUO
  • Publication number: 20200006273
    Abstract: A microelectronic device is formed including two or more structures physically and electrically engaged with one another through coupling of conductive features on the two structures. The conductive features may be configured to be tolerant of bump thickness variation in either of the structures. Such bump thickness variation tolerance can result from a contact structure on a first structure including a protrusion configured to extend in the direction of the second structure and to engage a deformable material on that second structure.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Manish Dubey, Kousik Ganesan, Suddhasattwa Nad, Thomas Heaton, Sri Chaitra Jyotsna Chavali, Amruthavalli Pallavi Alur
  • Publication number: 20190393183
    Abstract: Embodiments include a package substrate, a method of forming the package substrate, and a self-assembled monolayers (SAM) layer. The package substrate includes a SAM layer on portions of a conductive pad, where the SAM layer includes alight-reflective moieties. The package substrate also includes a via on a surface portion of the conductive pad, and a dielectric on and around the via, the SAM layer, and the conductive pad, where the SAM layer surrounds and contacts a surface of the via. The SAM layer may be an interfacial organic layer. The light-reflective moieties may include a hemicyanine, a cyclic-hemicyanine, an oligothiophene, and/or a conjugated aromatic compound. The SAM layer may include a molecular structure having a first end group of a first monolayer, an intermediate group, a fifth end group of a second monolayer, and one or more of a first and second light-reflective moieties.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 26, 2019
    Inventors: Suddhasattwa NAD, Rahul MANEPALLI, Marcel WALL
  • Publication number: 20190355636
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, the electrical package may include a first package layer. A plurality of signal lines with a first thickness may be formed on the first package layer. Additionally, a power plane with a second thickness may be formed on the first package layer. According to an embodiment, the second thickness is greater than the first thickness. Embodiments of the invention may form the power plane with a lithographic patterning and deposition process that is different than the lithographic patterning and deposition process used to form the plurality of signal lines. In an embodiment, the power plane may be formed concurrently with vias that electrically couple the signal lines to the next routing layer.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Krishna Bharath, Mathew J. Manusharow, Adel A. Elsherbini, Mihir K. Roy, Aleksandar Aleksov, Yidnekachew S. Mekonnen, Javier Soto Gonzalez, Feras Eid, Suddhasattwa Nad, Meizi Jiao
  • Publication number: 20190320537
    Abstract: Embodiments described herein are directed to interfacial layers and techniques of forming such interfacial layers. An interfacial layer having one or more light absorbing molecules is on a metal layer. The light absorbing molecule(s) may comprise a moiety exhibiting light absorbing properties. The interfacial layer can assist with improving adhesion of a resist layer to the metal layer and with improving use of one or more lithography techniques to fabricate interconnects and/or features using the resist and metal layers for a package substrate, a semiconductor package, or a PCB. For one embodiment, the interfacial layer includes, but is not limited to, an organic interfacial layer. Examples of organic interfacial layers include, but are not limited to, self-assembled monolayers (SAMs), constructs and/or variations of SAMs, organic adhesion promotor moieties, and non-adhesion promoter moieties.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Suddhasattwa NAD, Rahul MANEPALLI, Marcel WALL
  • Patent number: 10410939
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, the electrical package may include a first package layer. A plurality of signal lines with a first thickness may be formed on the first package layer. Additionally, a power plane with a second thickness may be formed on the first package layer. According to an embodiment, the second thickness is greater than the first thickness. Embodiments of the invention may form the power plane with a lithographic patterning and deposition process that is different than the lithographic patterning and deposition process used to form the plurality of signal lines. In an embodiment, the power plane may be formed concurrently with vias that electrically couple the signal lines to the next routing layer.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Krishna Bharath, Mathew J. Manusharow, Adel A. Elsherbini, Mihir K. Roy, Aleksandar Aleksov, Yidnekachew S. Mekonnen, Javier Soto Gonzalez, Feras Eid, Suddhasattwa Nad, Meizi Jiao
  • Publication number: 20190229082
    Abstract: Techniques and mechanisms for bonding structures of a circuit device with a monolayer. In an embodiment, a patterned metallization layer or a first dielectric layer includes a first surface portion. The first surface portion is exposed to first molecules which each include a first head group and a first end group which is substantially non-reactive with the first head group. The first head groups attach to the first portion to form a first self-assembled monolayer, which is subsequently reacted with second molecules to form a second monolayer comprising moieties of the first molecules. In another embodiment, the first head group comprises a first moiety comprising a sulfur atom or a nitrogen atom, where the first end group comprises one of an acid moiety, an acid anhydride moiety, an aliphatic alcohol moiety, an aromatic alcohol moiety, or an unsaturated hydrocarbon moiety.
    Type: Application
    Filed: April 2, 2018
    Publication date: July 25, 2019
    Applicant: Intel Corporation
    Inventors: Suddhasattwa Nad, Rahul N. Manepalli, Marcel A. Wall
  • Publication number: 20180331003
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, the electrical package may include a first package layer. A plurality of signal lines with a first thickness may be formed on the first package layer. Additionally, a power plane with a second thickness may be formed on the first package layer. According to an embodiment, the second thickness is greater than the first thickness. Embodiments of the invention may form the power plane with a lithographic patterning and deposition process that is different than the lithographic patterning and deposition process used to form the plurality of signal lines. In an embodiment, the power plane may be formed concurrently with vias that electrically couple the signal lines to the next routing layer.
    Type: Application
    Filed: December 16, 2015
    Publication date: November 15, 2018
    Inventors: Krishna BHARATH, Mathew J. MANUSHAROW, Adel A. ELSHERBINI, Mihir K. ROY, Aleksandar ALEKSOV, Yidnekachew S. MEKONNEN, Javier SOTO GONZALEZ, Feras EID, Suddhasattwa NAD, Meizi JIAO
  • Publication number: 20180315690
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, a transformer may be formed in the electrical package. The transformer may include a first conductive loop that is formed over a first dielectric layer. A thin dielectric spacer material may be used to separate the first conductive loop from a second conductive loop that is formed in the package. Additional embodiments of the invention include forming a capacitor formed in the electrical package. For example, the capacitor may include a first capacitor plate that is formed over a first dielectric layer. A thin dielectric spacer material may be used to separate the first capacitor plate form a second capacitor plate that is formed in the package. The thin dielectric spacer material in the transformer and capacitor allow for increased coupling factors and capacitance density in electrical components.
    Type: Application
    Filed: December 21, 2015
    Publication date: November 1, 2018
    Inventors: Adel A. ELSHERBINI, Mathew J. MANUSHAROW, Krishna BHARATH, William J. LAMBERT, Robert L. SANKMAN, Aleksandar ALEKSOV, Brandon M. RAWLINGS, Feras EID, Javier SOTO GONZALEZ, Meizi JIAO, Suddhasattwa NAD, Telesphor KAMGAING