Patents by Inventor Sujit Sharan

Sujit Sharan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050070095
    Abstract: A method including forming a chemically soluble coating on a plurality exposed contacts on a surface of a circuit substrate; scribing the surface of the substrate along scribe areas; and after scribing, removing a portion of the coating. A method including forming a circuit structure comprises a plurality of exposed contacts on a surface, a location of the exposed contacts defined by a plurality of scribe streets; forming a coating comprising a chemically soluble material on the exposed contacts; scribing the surface of the substrate along the scribe streets; and after scribing, removing the coating. A method including coating a surface of a circuit substrate comprising a plurality of exposed contacts with a chemically soluble material; scribing the surface of the substrate along scribe areas; removing the coating; and sawing the substrate in the scribe areas.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Inventors: Sujit Sharan, Thomas Debonis
  • Patent number: 6858904
    Abstract: A high aspect ratio contact structure formed over a junction region in a silicon substrate comprises a titanium interspersed with titanium silicide layer that is deposited in the contact opening and directly contacts an upper surface of the substrate. Silicon-doping of CVD titanium, from the addition of SiH4 during deposition, reduces consumption of substrate silicon during the subsequent silicidation reaction in which the titanium reacts with silicon to form a titanium silicide layer that provides low resistance electrical contacts between the junction region and the silicon substrate. The contact structure further comprises a titanium nitride contact fill that is deposited in the contact opening and fills substantially the entire contact opening.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ammar Derraa, Sujit Sharan, Paul Castrovillo
  • Publication number: 20050032361
    Abstract: A high aspect ratio contact structure formed over a junction region in a silicon substrate comprises a titanium interspersed with titanium silicide layer that is deposited in the contact opening and directly contacts an upper surface of the substrate. Silicon-doping of CVD titanium, from the addition of SiH4 during deposition, reduces consumption of substrate silicon during the subsequent silicidation reaction in which the titanium reacts with silicon to form a titanium silicide layer that provides low resistance electrical contacts between the junction region and the silicon substrate. The contact structure further comprises a titanium nitride contact fill that is deposited in the contact opening and fills substantially the entire contact opening.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 10, 2005
    Inventors: Ammar Derraa, Sujit Sharan, Paul Castrovillo
  • Publication number: 20050028732
    Abstract: A chemical vapor deposition apparatus includes a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. A substrate holder is received within the chamber. At least one process chemical inlet to the deposition chamber is included. At least one of the chamber sidewall and chamber base wall includes a chamber surface having a plurality of purge gas inlets to the chamber therein. The purge gas inlets are separate from the at least one process chemical inlet. A purge gas inlet passageway is provided in fluid communication with the purge gas inlets. Further implementations, including deposition method implementations, are contemplated.
    Type: Application
    Filed: August 6, 2004
    Publication date: February 10, 2005
    Inventors: Allen Mardian, Philip Campbell, Craig Carpenter, Randy Mercil, Sujit Sharan
  • Publication number: 20050020067
    Abstract: Titanium-containing films exhibiting excellent uniformity and step coverage are deposited on semiconductor wafers in a cold wall reactor which has been modified to discharge plasma into the reaction chamber. Titanium tetrabromide, titanium tetraiodide, or titanium tetrachloride, along with hydrogen, enter the reaction chamber and come in contact with a heated semiconductor wafer, thereby depositing a thin titanium-containing film on the wafer's surface. Step coverage and deposition rate are enhanced by the presence of the plasma. The use of titanium tetrabromide or titanium tetraiodide instead of titanium tetrachloride also increases the deposition rate and allows for a lower reaction temperature. Titanium silicide and titanium nitride can also be deposited by this method by varying the gas incorporated with the titanium precursors.
    Type: Application
    Filed: August 6, 2004
    Publication date: January 27, 2005
    Inventors: Sujit Sharan, Howard Rhodes, Philip Ireland, Gurtej Sandhu
  • Publication number: 20050009338
    Abstract: A method of forming a crystalline phase material includes, a) providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase; and b) annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. The stress inducing material preferably induces compressive stress within the first crystalline phase during the anneal to the second crystalline phase to lower the required activation energy to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials for providing into layers are Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material.
    Type: Application
    Filed: August 10, 2004
    Publication date: January 13, 2005
    Inventors: Gurtej Sandhu, Sujit Sharan
  • Patent number: 6841474
    Abstract: A method of forming a crystalline phase material includes, a) providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase; and b) annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. The stress inducing material preferably induces compressive stress within the first crystalline phase during the anneal to the second crystalline phase to lower the required activation energy to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials for providing into layers are Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material.
    Type: Grant
    Filed: January 18, 1999
    Date of Patent: January 11, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sujit Sharan
  • Publication number: 20040266187
    Abstract: The invention includes a method of forming a crystalline phase material which includes providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase and annealing the crystalline material of the first crystalline phase to transform it to a second crystalline phase. The stress inducing material induces compressive stress within the first crystalline phase during the anneal to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials for providing into layers are Ge, W and Co. Example and preferred crystalline phase materials having two phases are refractory metal silicides, such as TiSix. The invention additionally includes incorporating the crystalline phase material into a conductive line.
    Type: Application
    Filed: July 20, 2004
    Publication date: December 30, 2004
    Inventors: Gurtej S. Sandhu, Sujit Sharan
  • Patent number: 6835654
    Abstract: Methods of forming an electrically conductive line include providing a stress inducing material within or a compressive stress inducing layer operatively adjacent a crystalline material of a first crystalline phase. In addition, such methods include annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. Some methods also include providing stress inducing materials into a refractory metal layer. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials include Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material. Example and preferred crystalline phase materials having two phases are refractory metal silicides, such as TiSix.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: December 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sujit Sharan
  • Publication number: 20040234705
    Abstract: Integrated circuits are built layer by layer on a substrate. One technique for forming layers is chemical vapor deposition (CVD.). This technique injects gases through a gas-dispersion fixture into a chamber. The gases react and blanket a substrate in the chamber with a material layer. One way to promote uniform layer thickness is to coat the gas-dispersion fixture with a uniform layer of the material before using it for deposition on the substrate. However, known fixture-coating techniques yield uneven or poorly adherent coatings. Accordingly, the inventor devised new methods for coating these fixtures. One exemplary method heats a fixture to a temperature greater than its temperature during normal deposition and then passes one or more gases through the fixture to form a coating on it. The greater conditioning temperature improves evenness and adhesion of the fixture coating, which, in turn, produces higher quality layers in integrated circuits.
    Type: Application
    Filed: June 15, 2004
    Publication date: November 25, 2004
    Applicant: Micron Technology, Inc.
    Inventor: Sujit Sharan
  • Patent number: 6822299
    Abstract: Conductive contacts in a semiconductor structure, and methods for forming the conductive components are provided. The contacts are useful for providing electrical connection to active components beneath an insulation layer in integrated circuits such as memory devices. The conductive contacts comprise boron-doped TiCl4-based titanium nitride, and possess a sufficient level adhesion to the insulative layer to eliminate peeling from the sidewalls of the contact opening and cracking of the insulative layer when formed to a thickness of greater than about 200 angstroms.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: November 23, 2004
    Assignee: Micron Technology Inc.
    Inventors: Ammar Derraa, Sujit Sharan, Paul Castrovillo
  • Patent number: 6815344
    Abstract: A method of forming a crystalline phase material includes, a) providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase; and b) annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. The stress inducing material preferably induces compressive stress within the first crystalline phase during the anneal to the second crystalline phase to lower the required activation energy to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials for providing into layers are Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sujit Sharan
  • Patent number: 6812512
    Abstract: This invention is a process for manufacturing a random access memory array. Each memory cell within the array which results from the process incorporates a stacked capacitor, a silicon nitride coated access transistor gate electrode, and a self-aligned high-aspect-ratio digit line contact having a tungsten plug which extends from the substrate to a metal interconnect structure located at a level above the stacked capacitor. The contact opening is lined with titanium metal which is in contact with the substrate, and with titanium nitride that is in contact with the plug. Both the titanium metal and the titanium nitride are deposited via chemical vapor deposition reactions.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Howard E. Rhodes, Sujit Sharan, Gurtel Sandhu, Philip J. Ireland
  • Patent number: 6800517
    Abstract: The invention includes a method of forming a conductive interconnect. An electrical node location is defined to be supported by a silicon-containing substrate. A silicide is formed in contact with the electrical node location. The silicide is formed by exposing the substrate to hydrogen, TiCl4 and plasma conditions to cause Ti from the TiCl4 to combine with silicon of the substrate to form TiSix. Conductively doped silicon material is formed over the silicide. The conductively doped silicon material is exposed to one or more temperatures of at least about 800° C. The silicide is also exposed to the temperatures of at least about 800° C.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Trung Tri Doan, Howard E. Rhodes, Sujit Sharan, Philip J. Ireland, Martin Ceredig Roberts
  • Publication number: 20040180537
    Abstract: In one aspect, the invention includes a semiconductor processing method comprising exposing silicon, nitrogen and oxygen in gaseous form to a high density plasma during deposition of a silicon, nitrogen and oxygen containing solid layer over a substrate.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 16, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sujit Sharan
  • Publication number: 20040180558
    Abstract: In one aspect, the invention includes a method of forming a silicon dioxide layer, comprising: a) forming a high density plasma proximate a substrate, the plasma comprising silicon dioxide precursors; b) forming silicon dioxide from the precursors, the silicon dioxide being deposited over the substrate at a deposition rate; and c) while depositing, etching the deposited silicon dioxide with the plasma at an etch rate; a ratio of the deposition rate to the etch rate being at least about 4:1. In another aspect, the invention includes a method of forming a silicon dioxide layer, comprising: a) forming a high density plasma proximate a substrate; b) flowing gases into the plasma, at least some of the gases forming silicon dioxide; c) depositing the silicon dioxide formed from the gases over the substrate; and d) while depositing the silicon dioxide, maintaining a temperature of the substrate at greater than or equal to about 500° C.
    Type: Application
    Filed: March 30, 2004
    Publication date: September 16, 2004
    Inventors: Sujit Sharan, Gurtej S. Sandhu
  • Patent number: 6791149
    Abstract: Diffusion barrier film layers and methods of manufacture and use are provided. The films comprise boron-doped TiCl4-based titanium nitride, and provide an improved diffusion barrier having good adhesive, electrical conductivity, and anti-diffusion properties. The films can be formed on a silicon substrate without an underlying contact layer such as TiSix, an improvement in the fabrication of contacts to shallow junctions and other miniature components of integrated circuits.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: September 14, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ammar Derraa, Sujit Sharan, Paul Castrovillo
  • Publication number: 20040166622
    Abstract: The invention includes a method of forming a conductive interconnect. An electrical node location is defined to be supported by a silicon-containing substrate. A silicide is formed in contact with the electrical node location. The silicide is formed by exposing the substrate to hydrogen, TiCl4 and plasma conditions to cause Ti from the TiCl4 to combine with silicon of the substrate to form TiSix. Conductively doped silicon material is formed over the silicide. The conductively doped silicon material is exposed to one or more temperatures of at least about 800° C. The silicide is also exposed to the temperatures of at least about 800° C.
    Type: Application
    Filed: March 2, 2004
    Publication date: August 26, 2004
    Inventors: Gurtej S. Sandhu, Trung Tri Doan, Howard E. Rhodes, Sujit Sharan, Philip J. Ireland, Martin Cereding Roberts
  • Patent number: 6777330
    Abstract: Titanium-containing films exhibiting excellent uniformity and step coverage are deposited on semiconductor wafers in a cold wall reactor which has been modified to discharge plasma into the reaction chamber. Titanium tetrabromide, titanium tetraiodide, or titanium tetrachloride, along with hydrogen, enter the reaction chamber and come in contact with a heated semiconductor wafer, thereby depositing a thin titanium-containing film on the wafer's surface. Step coverage and deposition rate are enhanced by the presence of the plasma. The use of titanium tetrabromide or titanium tetraiodide instead of titanium tetrachloride also increases the deposition rate and allows for a lower reaction temperature. Titanium silicide and titanium nitride can also be deposited by this method by varying the gas incorporated with the titanium precursors.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Sujit Sharan, Howard E. Rhodes, Philip J. Ireland, Gurtej S. Sandhu
  • Patent number: 6773502
    Abstract: Methods of forming an electrically conductive line include providing a stress inducing material within or a compressive stress inducing layer operatively adjacent a crystalline material of a first crystalline phase. In addition, such methods include annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. Some methods also include providing stress inducing materials into a refractory metal layer. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials include Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material. Example and preferred crystalline phase materials having two phases are refractory metal silicides, such as TiSix.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: August 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sujit Sharan