Patents by Inventor Sun-Chang Kim

Sun-Chang Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170027969
    Abstract: Provided are a food composition and a feed composition for removing amyloid plaques, each composition including ginsenoside F1, in which ginsenoside F1 is effective for removing amyloid plaques in the hippocampal area of the brain.
    Type: Application
    Filed: June 27, 2016
    Publication date: February 2, 2017
    Inventors: Sun Chang Kim, Jin Hee Han, Suk Chae Jung
  • Patent number: 9527886
    Abstract: Disclosed are an amphipathic peptide-lipase conjugate with enhanced lipase activity, a polynucleotide coding for the conjugate, an expression vector carrying the polynucleotide, a transformant anchoring the expression vector therein, a method for preparing the conjugate, a lipolysis method using the conjugate, and a method for producing biodiesel using the lipase.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 27, 2016
    Assignees: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, INTELLIGENT SYNTHETIC BIOLOGY CENTER
    Inventors: Sun-Chang Kim, Bong Hyun Sung, Kyung Seok Yang, Jun Hyoung Lee, Ki Jung Lim, Myung Keun Park
  • Publication number: 20160256477
    Abstract: The present invention relates to a pharmaceutical composition, a health functional food, and a feed composition for the prevention, improvement, or treatment of non-alcoholic liver disease or insulin resistance comprising ginsenoside F2. The pharmaceutical composition according to the present invention comprising ginsenoside F2 can inhibit the adipogenesis and lipid accumulation in the liver, improve insulin sensitivity, inhibit the expression of inflammatory cytokines such as TNF-?, IL-?, and IL-6 in the Kupffer cell, inhibit the expression of endocannabinoid synthase, thus capable of effectively preventing or treating non-alcoholic liver disease or insulin resistance.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 8, 2016
    Inventors: Won Il Jeong, Sun Chang Kim, Ju Yeon Jung, Wan Taek Im
  • Publication number: 20160083767
    Abstract: Provided are a novel UDP-glycosyltransferase (uridine diphosphate glycosyltransferase) protein having glycosyltransfer activity for glucose linked by a glycosidic bond at the C-20 position of PPD (protopanaxadiol)-type or PPT (protopanaxatriol)-type ginsenoside, and use thereof.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 24, 2016
    Inventors: Sun-Chang KIM, Giltsu CHOI, Suk-Chae JUNG, Woohyun KIM, Soohwan LIM, Wan-Taek IM
  • Publication number: 20160067270
    Abstract: Provided are use of ginsenoside F2 in the prevention, improvement or treatment of liver disease, and a pharmaceutical composition, a health functional food, and a feed composition including ginsenoside F2. Ginsenoside F2 inhibits fat synthesis and accumulation in the liver, and increases distribution of regulatory T cells capable of inhibiting activity of inflammatory cells, thereby preventing hepatitis, and also increases expression of anti-inflammatory cytokine IL-10 in regulatory T cells, and inhibits differentiation of naive T cells into Th17 cells, and is thereby effectively used for the treatment of various liver diseases.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 10, 2016
    Inventors: Won Il Jeong, Ju Yeon Jung, Sun Chang Kim, Wan Taek Im
  • Publication number: 20150366992
    Abstract: The present invention provides an antimicrobial peptide polymer comprising at least one monomer which is digested by pepsin, a multimeric antimicrobial peptide complex comprising the polymer and a cell surface anchoring motif linked to the polymer, an antimicrobial microorganism displaying the multimeric antimicrobial peptide complex, an antimicrobial composition comprising the same, a method of treating an infectious disease caused by bacteria, yeast or fungi by administering the antimicrobial composition, and a method for producing the antimicrobial microorganism. According to the invention, living microorganisms displaying an antimicrobial peptide on the cell surface thereof may be administered in vivo without having to lyse the microbial cell and isolate and purify the antimicrobial peptide, so that the antimicrobial peptide exhibits antimicrobial activity. Thus, the antimicrobial peptide may be produced at significantly reduced costs so that it may have widespread use.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 24, 2015
    Inventors: Sun-Chang Kim, Ju Ri Shin, Ki Jung Lim, Da Jung Kim, Young Woong Lee, Su A Jang, Bong Hyun Sung
  • Publication number: 20150252337
    Abstract: The present invention relates to a novel uridine diphosphate (UDP)-glycosyltransferase, and particularly to a novel UDP-glycosyltransferase derived from ginseng and use thereof, a method for preparing glycosylated ginsenoside by converting protopanaxadiol (PPD)-type ginsenoside using the UDP-glycosyltransferase, a composition for converting the PPD-type ginsenoside into glycosylated ginsenoside, comprising the UDP-glycosyltransferase, a transformant or a culture thereof as active ingredients, a method for enhancing the expression of the UDP-glycosyltransferase using MeJA (methyl jasmonate), and a composition for enhancing the expression of the UDP-glycosyltransferase, which comprises MeJA as an active ingredient.
    Type: Application
    Filed: December 24, 2012
    Publication date: September 10, 2015
    Inventors: Sun-Chang Kim, Gil Tsu Choi, Suk Chae Jung, Woo Hyun Kim, Wan Taek Im, Yeon Lee
  • Publication number: 20150240220
    Abstract: The present invention relates to a novel uridine diphosphate (UDP)-glycosyltransferase, and particularly to a novel UDP-glycosyltransferase derived from ginseng and use thereof, a method for preparing glycosylated ginsenoside by converting protopanaxadiol (PPD)-type ginsenoside using the UDP-glycosyltransferase, a composition for converting the PPD-type ginsenoside into glycosylated ginsenoside, comprising the UDP-glycosyltransferase, a transformant or a culture thereof as active ingredients, a method for enhancing the expression of the UDP-glycosyltransferase using MeJA (methyl jasmonate), and a composition for enhancing the expression of the UDP-glycosyltransferase, which comprises MeJA as an active ingredient.
    Type: Application
    Filed: December 24, 2012
    Publication date: August 27, 2015
    Inventors: Sun-Chang Kim, Gil Tsu Choi, Suk Chae Jung, Woo Hyun Kim, Wan Taek Im, Yeon Lee
  • Publication number: 20150183864
    Abstract: The present application describes an isolated nucleic acid molecule encoding a polypeptide capable of synchronously binding VEGF polypeptide and TNF polypeptide comprising: (a) a nucleotide sequence encoding a TNFR2 component and VEGFR1 component operatively linked to (b) a nucleotide sequence encoding a multimerizing component, wherein the TNFR2 component consists essentially of a nucleotide sequence encoding the amino acid sequences of cystein rich domain 1, cystein rich domain 2, cystein rich domain 3, and cystein rich domain 4 of the extracellular domain of TNFR2, and wherein the VEGFR1 component consists essentially of a nucleotide sequence encoding the amino acid sequences of Ig-like domain 2 of the extracellular domain of VEGFR1.
    Type: Application
    Filed: November 12, 2014
    Publication date: July 2, 2015
    Inventors: KEEHOON JUNG, YOUNG JUN KOH, GYUN MIN LEE, SUN CHANG KIM, GOU YOUNG KOH
  • Patent number: 9067970
    Abstract: The present invention relates a prophylactic or therapeutic composition for cancer, and more particularly, to a prophylactic or therapeutic composition for cancer comprising a peptide which is represented by an amino acid sequence of the following Formula (I), a method for preventing or treating cancer comprising the step of administering the peptide to a subject, and use of the peptide in the preparation of the prophylactic or therapeutic composition for cancer. (I) APKAMX1LLX2X3L-LX4LQKKGI wherein X1, X2, X3 and X4 are each independently R or K.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: June 30, 2015
    Assignees: Korea Advanced Institute of Science and Technology, Intelligent Synthetic Biology Center
    Inventors: Sun Chang Kim, Su A Jang, Da Jung Kim, Bong Hyun Sung, Ki Jeong Lim, Ju Ri Shin, Young Woong Lee
  • Publication number: 20150044712
    Abstract: For efficient analysis of a protein-protein interaction, the present disclosure provides a kit for analyzing a protein-protein interaction, the kit including: a 1st expression vector including a 1st polynucleotide and a multi-cloning site, wherein, the 1st polynucleotide is operably linked to a promoter and encodes a 1st fusion protein having a 1st fluorescence protein and a 1st self-assembly protein, and the multi-cloning site is a site where a polynucleotide encoding a bait protein may be operably linked to the polynucleotide encoding the 1st fusion protein; and a 2nd expression vector including a 2nd polynucleotide and a multi-cloning site, wherein, the 2nd polynucleotide is operably linked to a promoter and encodes a 2nd fusion protein having a 2nd fluorescence protein and a 2nd self-assembly protein, and the multi-cloning site is a site where a polynucleotide encoding a prey protein may be operably linked to the polynucleotide encoding the 2nd fusion protein.
    Type: Application
    Filed: July 23, 2012
    Publication date: February 12, 2015
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Won Do Heo, Sun Chang Kim, Sang Kyu Lee
  • Patent number: 8927232
    Abstract: The present application describes an isolated nucleic acid molecule encoding a polypeptide capable of synchronously binding VEGF polypeptide and TNF polypeptide comprising: (a) a nucleotide sequence encoding a TNFR2 component and VEGFR1 component operatively linked to (b) a nucleotide sequence encoding a multimerizing component, wherein the TNFR2 component consists essentially of a nucleotide sequence encoding the amino acid sequences of cystein rich domain 1, cystein rich domain 2, cystein rich domain 3, and cystein rich domain 4 of the extracellular domain of TNFR2, and wherein the VEGFR1 component consists essentially of a nucleotide sequence encoding the amino acid sequences of Ig-like domain 2 of the extracellular domain of VEGFR1.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 6, 2015
    Assignee: Korea Advanced Institute of Science and Technology (KAIST)
    Inventors: Keehoon Jung, Young Jun Koh, Gyun Min Lee, Sun Chang Kim, Gou Young Koh
  • Patent number: 8871716
    Abstract: Disclosed are novel antimicrobial peptides which can promote the regeneration of skin cells, thus healing wounds. Pharmaceutical compositions comprising the peptides as active ingredients are also provided for wound healing and skin rejuvenation. The antimicrobial peptides exhibit inhibitory activity against antibiotic-resistant strains, and their antimicrobial activity is maintained without loss of structural stability even under a high salt condition. Also, being proven to promote the migration and regeneration of skin cells in mice as well as in vitro, the antimicrobial peptides may be widely used as an agent for regenerating skin cells. Further, they can find applications in various fields including the medical industry and the cosmetic industry. Hence, the novel antimicrobial peptides are anticipated to have considerable repercussions in the market for antibiotics, wound healing agents and cosmetics.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 28, 2014
    Assignees: Korea Advanced Institute of Science and Technology, Intelligent Synthetic Biology Center
    Inventors: Sun-Chang Kim, Da-Jung Kim, Su-A Jang, Bong Hyun Sung, Ki-Jung Lim, Ju-Ri Shin, Young Woong Lee
  • Publication number: 20140162331
    Abstract: Disclosed are an amphipathic peptide-lipase conjugate with enhanced lipase activity, a polynucleotide coding for the conjugate, an expression vector carrying the polynucleotide, a transformant anchoring the expression vector therein, a method for preparing the conjugate, a lipolysis method using the conjugate, and a method for producing biodiesel using the lipase.
    Type: Application
    Filed: August 10, 2012
    Publication date: June 12, 2014
    Inventors: Sun-Chang Kim, Bong Hyun Sung, Kyung Seok Yang, Jun Hyoung Lee, Ki Jung Lim, Myung Keun Park
  • Patent number: 8735129
    Abstract: The present invention relates to a novel ginsenoside glycosidase protein derived from the genus Terrabacter, the protein having an activity of converting protopanaxadiol (PPD)-type saponins into highly active substances, which can be absorbed inside the body, by selective hydrolysis of a particular bond of ginsenoside. More specifically, the present invention relates to an amino acid sequence of the protein, a nucleic acid sequence encoding the protein, a recombinant vector comprising the nucleic acid sequence, and a transformant transformed with the vector, and a method for producing ginsenoside glycosidase derived from the genus Terrabacter by culturing the transformant, a method for converting PPD-type major saponins into the minor saponin forms using the protein, and a composition for converting PPD-type saponins into soluble saponins, comprising the protein as an active component.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 27, 2014
    Assignee: Korea Research Institute of Bioscience and Biotechnology
    Inventors: Dong Shan An, Song Gun Kim, Sung Taik Lee, Wan Taek Im, Hyung Gwan Lee, Sun Chang Kim
  • Publication number: 20130345119
    Abstract: The present invention provides an antimicrobial peptide polymer comprising at least one monomer which is digested by pepsin, a multimeric antimicrobial peptide complex comprising the polymer and a cell surface anchoring motif linked to the polymer, an antimicrobial microorganism displaying the multimeric antimicrobial peptide complex, an antimicrobial composition comprising the same, a method of treating an infectious disease caused by bacteria, yeast or fungi by administering the antimicrobial composition, and a method for producing the antimicrobial microorganism. According to the invention, living microorganisms displaying an antimicrobial peptide on the cell surface thereof may be administered in vivo without having to lyse the microbial cell and isolate and purify the antimicrobial peptide, so that the antimicrobial peptide exhibits antimicrobial activity. Thus, the antimicrobial peptide may be produced at significantly reduced costs so that it may have widespread use.
    Type: Application
    Filed: December 28, 2010
    Publication date: December 26, 2013
    Applicants: INTELLIGENT SYNTHETIC BIOLOGY CENTER, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun-Chang Kim, Ju Ri Shin, Ki Jung Lim, Da Jung Kim, Young Woong Lee, Su A Jang, Bong Hyun Sung
  • Publication number: 20130244949
    Abstract: The present invention relates a prophylactic or therapeutic composition for cancer, and more particularly, to a pro-phylactic or therapeutic composition for cancer comprising a peptide which is represented by an amino acid sequence of the following Formula (I), a method for preventing or treating cancer comprising the step of administering the peptide to a subject, and use of the peptide in the preparation of the prophylactic or therapeutic composition for cancer. (I) APKAMX1LLX2X3L-LX4LQKKGI wherein X1, X2, X3 and X4 are each independently R or K.
    Type: Application
    Filed: December 24, 2010
    Publication date: September 19, 2013
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Chang Kim, Su A Jang, Da Jung Kim, Bong Hyun Sung, Ki Jeong Lim, Ju Ri Shin, Young Woong Lee
  • Patent number: 8367380
    Abstract: The present invention relates generally to compositions and methods useful for, inter alia, production of commercial biologic products such as amino acids. More specifically, the present invention relates to genetically modified strains of microorganisms and the use thereof for the production of commercial products. The present invention also provides, inter alia, novel isolated DNA, nucleic acid, vectors and reduced genome bacteria.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: February 5, 2013
    Assignee: Scarab Genomics LLC
    Inventors: Frederick R. Blattner, Sun Chang Kim, Jun Hyoung Lee
  • Publication number: 20120264167
    Abstract: The present invention relates to a novel ginsenoside glycosidase protein derived from the genus Terrabacter, the protein having an activity of converting protopanaxadiol (PPD)-type saponins into highly active substances, which can be absorbed inside the body, by selective hydrolysis of a particular bond of ginsenoside. More specifically, the present invention relates to an amino acid sequence of the protein, a nucleic acid sequence encoding the protein, a recombinant vector comprising the nucleic acid sequence, and a transformant transformed with the vector, and a method for producing ginsenoside glycosidase derived from the genus Terrabacter by culturing the transformant, a method for converting PPD-type major saponins into the minor saponin forms using the protein, and a composition for converting PPD-type saponins into soluble saponins, comprising the protein as an active component.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 18, 2012
    Applicant: KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY
    Inventors: Dong Shan AN, Song Gun KIM, Sung Taik LEE, Wan Taek IM, Hyung Gwan LEE, Sun Chang KIM
  • Patent number: 8242242
    Abstract: The present invention relates to an artificial transcription factor which can artificially regulate gene expression of an E. coli, wherein the transcription factor comprising zinc finger proteins and transcription factors of prokaryote, and to be engineered E. coli using the same. Specifically, the artificial transcription factors comprising zinc finger domains and transcription factors in E. coli as effector domains are prepared and said artificial transcription library is introduced to E. coli to effectively and artificially regulate gene expression regardless of an activity of endogenous transcription factors in the E. coli and to induce E. coli having various desired phenotypes. Thus, only E. coli having the desired phenotypes useful for industries can be selected and used.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 14, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sun-Chang Kim, Ju-Young Lee, Bong-Hyun Sung, Jun-Hyoung Lee, Sang-Hee Lee, Kui-Hyeon Kang