Patents by Inventor Sundar Ramamurthy

Sundar Ramamurthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120058648
    Abstract: Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Inventors: Ming-Kuei (Michael) Tseng, Norman Tam, Yoshitaka Yokota, Agus Tjandra, Robert Navasca, Mehran Behdjat, Sundar Ramamurthy, Kedarnath Sangam, Alexander N. Lerner
  • Publication number: 20120031332
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Patent number: 8056500
    Abstract: Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 15, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Ming-Kuei (Michael) Tseng, Norman Tam, Yoshitaka Yokota, Agus Tjandra, Robert Navasca, Mehran Behdjat, Sundar Ramamurthy, Kedarnath Sangam, Alexander N. Lerner
  • Publication number: 20110250764
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 13, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Publication number: 20110185020
    Abstract: Methods, systems and computer program products are provided for social networking. In one method, a network builder receives a digital object from the user. The digital object contains information associated with the user. The network builder extracts the information associated with the user from the digital object. The network builder further access the strength of relationships between the user and a plurality of other users, each associated with one or more social networks. The relationships strength is extracted based at least in part on the extracted information. The network builder then adds the user to one or more social networks based on the information associated with the user and the strength of the relationships between the user and the plurality of other users.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 28, 2011
    Applicant: Yahoo! Inc.
    Inventors: Shyam Sundar Ramamurthy, Manish Satyapal Gupta, Himanshu Verma, Shyam Krishnamurthy, Srinivas Devarakonda
  • Patent number: 7986871
    Abstract: A method of adjusting the heat transfer properties within a processing chamber is presented. Chamber properties may be determined and adjusted by adjusting the thermal mass of an edge ring disposed in the processing chamber.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: July 26, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Sundar Ramamurthy, Andreas G. Hegedus, Randhir Thakur
  • Patent number: 7972441
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Patent number: 7923660
    Abstract: Disclosed is the method and apparatus for annealing semiconductor substrates. One embodiment provides a semiconductor processing chamber comprising a first substrate support configured to support a substrate, a second substrate support configured to support a substrate, a shuttle coupled to the first substrate support and configured to move the first substrate support between a processing zone and a first loading zone, wherein the processing zone having a processing volume configured to alternately accommodating the first substrate support and the second substrate support.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Timothy N. Thomas, Sundar Ramamurthy
  • Publication number: 20100297854
    Abstract: Methods of fabricating an oxide layer on a semiconductor structure are provided herein. In some embodiments, a method of selectively forming an oxide layer on a semiconductor structure includes providing a substrate having one or more metal-containing layers and one or more non metal-containing layers to a substrate support in a plasma reactor; introducing a first process gas into the plasma reactor, wherein the first process gas comprises hydrogen (H2) and oxygen (O2); maintaining the structure at a temperature of less than about 100 degrees Celsius; and generating a first plasma from the first process gas to selectively form an oxide layer on the one or more non metal-containing layers, wherein the first plasma has a density of greater than about 1010 ions/cm3.
    Type: Application
    Filed: April 20, 2010
    Publication date: November 25, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sundar Ramamurthy, Majeed Foad, Matthew Scotney-Castle, Marla Britt, Yen B. Ta
  • Patent number: 7811877
    Abstract: Methods of processing silicon substrates to form metal silicide layers thereover having more uniform thicknesses are provided herein. In some embodiments, a method of processing a substrate includes providing a substrate having a plurality of exposed regions comprising silicon, wherein at least two of the plurality of exposed regions have a different rate of formation of a metal silicide layer thereover; doping at least one of the exposed regions to control the rate of formation of a metal silicide layer thereover; and forming a metal silicide layer upon the exposed regions of the substrate, wherein the metal silicide layer has a reduced maximum thickness differential between the exposed regions.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: October 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sundar Ramamurthy, Majeed A. Foad
  • Patent number: 7700376
    Abstract: A retuning process particularly useful with an Ar/H2 smoothing anneal by rapid thermal processing (RTP) of a silicon-on-insulator (SOI) wafer performed after cleavage. The smoothing anneal or other process is optimized including a radial temperature profile accounting for the edge ring and exclusion zone and the vertically structured SOI stack or other wafer gross structure. The optimized smoothing conditions are used to oxidize a bare silicon wafer and a reference thickness profile obtained from it is archived. After extended processing of complexly patterned production wafers, another bare wafer is oxidized and its monitor profile is compared to the reference profile, and the production process is adjusted accordingly. In another aspect, a jet of cooling gas is preferentially directed to the edge ring and peripheral portions of the supported SOI wafer to cool them relative to the inner wafer portions.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Juan Chacin, Sairaju Tallavajula, Sundar Ramamurthy
  • Publication number: 20100065547
    Abstract: A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: STEPHEN MOFFATT, Abhilash J. Mayur, Sundar Ramamurthy, Joseph Ranish, Aaron Hunter
  • Publication number: 20100068898
    Abstract: A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: STEPHEN MOFFATT, Abhilash J. Mayur, Sundar Ramamurthy, Joseph Ranish, Aaron Hunter
  • Publication number: 20090163042
    Abstract: Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 25, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ming-Kuei (Michael) Tseng, Norman Tam, Yoshitaka Yokota, Agus Tjandra, Robert Navasca, Medhran Behdjat, Sundar Ramamurthy, Kedarnath Sangam, Alexander N. Lerner
  • Patent number: 7509035
    Abstract: A thermal processing chamber includes a substrate support rotating about a center axis and a lamphead of plural lamps in an array having a predetermined difference in radiance pattern between them. The radiance pattern includes a variation in diffuseness or collimation. In one embodiment, the center lines of all of the lamps are disposed away from the center axis. The array can be an hexagonal array, in which the center axis is located at a predetermined position between neighboring lamps.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: March 24, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Joseph M. Ranish, Corina E. Tanasa, Sundar Ramamurthy, Claudia Lai, Ravi Jallepally, Ramachandran Balasubramanian, Aaron M. Hunter, Agus Tjandra, Norman Tam
  • Publication number: 20090045182
    Abstract: Embodiments of the present invention provide method and apparatus for annealing semiconductor substrates. One embodiment of the present invention provides a semiconductor processing chamber comprising a first substrate support configured to support a substrate, a second substrate support configured to support a substrate, a shuttle coupled to the first substrate support and configured to move the first substrate support between a processing zone and a first loading zone, wherein the processing zone having a processing volume configured to alternately accommodating the first substrate support and the second substrate support.
    Type: Application
    Filed: August 15, 2007
    Publication date: February 19, 2009
    Inventors: ALEXANDER N. LERNER, Timothy N. Thomas, Sundar Ramamurthy
  • Publication number: 20090041443
    Abstract: Apparatus and methods of thermally treating a wafer or other substrate, such as rapid thermal processing (RTP) apparatus and methods are disclosed. An array of radiant lamps directs radiation to the back side of a wafer to heat the wafer. In one or more embodiments, the front side of the wafer on which the patterned integrated circuits are being formed faces a radiant reflector. In one or more embodiments, the wafer is thermally monitored for temperature and reflectivity from the side of the reflector.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 12, 2009
    Inventors: Wolfgang Aderhold, Sundar Ramamurthy, Aaron Hunter
  • Publication number: 20090023257
    Abstract: Methods of processing silicon substrates to form metal silicide layers thereover having more uniform thicknesses are provided herein. In some embodiments, a method of processing a substrate includes providing a substrate having a plurality of exposed regions comprising silicon, wherein at least two of the plurality of exposed regions have a different rate of formation of a metal silicide layer thereover; doping at least one of the exposed regions to control the rate of formation of a metal silicide layer thereover; and forming a metal silicide layer upon the exposed regions of the substrate, wherein the metal silicide layer has a reduced maximum thickness differential between the exposed regions.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SUNDAR RAMAMURTHY, Majeed A. Foad
  • Publication number: 20090010626
    Abstract: A method of adjusting the heat transfer properties within a processing chamber is presented. Chamber properties may be determined and adjusted by adjusting the thermal mass of an edge ring disposed in the processing chamber.
    Type: Application
    Filed: September 17, 2008
    Publication date: January 8, 2009
    Inventors: SUNDAR RAMAMURTHY, Andreas G. Hegedus, Randhir Thakur
  • Patent number: 7414224
    Abstract: Apparatus and methods of thermally treating a wafer or other substrate, such as rapid thermal processing (RTP) apparatus and methods are disclosed. An array of radiant lamps directs radiation to the back side of a wafer to heat the wafer. In one or more embodiments, the front side of the wafer on which the patterned integrated circuits are being formed faces a radiant reflector. In one or more embodiments, the wafer is thermally monitored for temperature and reflectivity from the side of the reflector.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: August 19, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Aderhold, Sundar Ramamurthy, Aaron Hunter