Patents by Inventor Sung-dae Suk

Sung-dae Suk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7952151
    Abstract: A semiconductor device may include a substrate, an active semiconductor region of the substrate, and a gate electrode. The active semiconductor region may include a channel region between first and second junction regions. The channel region may include a first semiconductor material, the first and second junction regions may include a second semiconductor material, and the first and second semiconductor materials may be different. The gate electrode may be on the channel region with portions of the first and second junction regions being free of the gate electrode.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 31, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-woo Oh, Dong-gun Park, Dong-won Kim, Sung-dae Suk
  • Publication number: 20110079859
    Abstract: A semiconductor device may include a substrate, an active semiconductor region of the substrate, and a gate electrode. The active semiconductor region may include a channel region between first and second junction regions. The channel region may include a first semiconductor material, the first and second junction regions may include a second semiconductor material, and the first and second semiconductor materials may be different. The gate electrode may be on the channel region with portions of the first and second junction regions being free of the gate electrode.
    Type: Application
    Filed: November 19, 2010
    Publication date: April 7, 2011
    Inventors: Chang-Woo Oh, Dong-gun Park, Dong-won Kim, Sung-dae Suk
  • Patent number: 7859064
    Abstract: A semiconductor device may include a substrate, an active semiconductor region of the substrate, and a gate electrode. The active semiconductor region may include a channel region between first and second junction regions. The channel region may include a first semiconductor material, the first and second junction regions may include a second semiconductor material, and the first and second semiconductor materials may be different. The gate electrode may be on the channel region with portions of the first and second junction regions being free of the gate electrode.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-woo Oh, Dong-gun Park, Dong-won Kim, Sung-dae Suk
  • Publication number: 20100314604
    Abstract: The gate-all-around (GAA) type semiconductor device may include source/drain layers, a nanowire channel, a gate electrode and an insulation layer pattern. The source/drain layers may be disposed at a distance in a first direction on a semiconductor substrate. The nanowire channel may connect the source/drain layers. The gate electrode may extend in a second direction substantially perpendicular to the first direction. The gate electrode may have a height in a third direction substantially perpendicular to the first and second directions and may partially surround the nanowire channel. The insulation layer pattern may be formed between and around the source/drain layers on the semiconductor substrate and may cover the nanowire channel and a portion of the gate electrode. Thus, a size of the gate electrode may be reduced, and/or a gate induced drain leakage (GIDL) and/or a gate leakage current may be reduced.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 16, 2010
    Inventors: Sung-Dae Suk, Dong-Won Kim, Kyoung-Hwan Yeo
  • Patent number: 7803675
    Abstract: The gate-all-around (GAA) type semiconductor device may include source/drain layers, a nanowire channel, a gate electrode and an insulation layer pattern. The source/drain layers may be disposed at a distance in a first direction on a semiconductor substrate. The nanowire channel may connect the source/drain layers. The gate electrode may extend in a second direction substantially perpendicular to the first direction. The gate electrode may have a height in a third direction substantially perpendicular to the first and second directions and may partially surround the nanowire channel. The insulation layer pattern may be formed between and around the source/drain layers on the semiconductor substrate and may cover the nanowire channel and a portion of the gate electrode. Thus, a size of the gate electrode may be reduced, and/or a gate induced drain leakage (GIDL) and/or a gate leakage current may be reduced.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Dae Suk, Dong-Won Kim, Kyoung-Hwan Yeo
  • Patent number: 7795687
    Abstract: A method of fabricating a MOSFET provides a plurality of nanowire-shaped channels in a self-aligned manner. According to the method, a first material layer and a semiconductor layer are sequentially formed on a semiconductor substrate. A first mask layer pattern is formed on the semiconductor layer, and recess regions are formed using the first mask layer pattern as an etch mask. A first reduced mask layer pattern is formed, and a filling material layer is formed on the surface of the substrate. A pair of second mask layer patterns are formed, and a first opening is formed. Then, the filling material layer is etched to form a second opening, the exposed first material layer is removed to expose the semiconductor layer, and a gate insulation layer and a gate electrode layer enclosing the exposed semiconductor layer are formed.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-dae Suk, Sung-young Lee, Dong-won Kim, Sung-min Kim
  • Patent number: 7781290
    Abstract: A complementary metal-oxide semiconductor (CMOS) device includes an NMOS thin body channel including a silicon epitaxial layer. An NMOS insulating layer is formed on a surface of the NMOS thin body channel and surrounds the NMOS thin body channel. An NMOS metal gate is formed on the NMOS insulating layer. The CMOS device further includes a p-channel metal-oxide semiconductor (PMOS) transistor including a PMOS thin body channel including a silicon epitaxial layer. A PMOS insulating layer is formed on a surface of and surrounds the PMOS thin body channel. A PMOS metal gate is formed on the PMOS insulating layer. The NMOS insulating layer includes a silicon oxide layer and the PMOS insulating layer includes an electron-trapping layer, the NMOS insulating layer includes a hole trapping dielectric layer and the PMOS insulating layer includes a silicon oxide layer, or the NMOS insulating layer includes a hole-trapping dielectric layer and the PMOS insulating layer includes an electron-trapping dielectric layer.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-young Lee, Sung-min Kim, Sung-dae Suk, Eun-jung Yun
  • Publication number: 20100151649
    Abstract: A method of forming a minute pattern includes forming mold patterns spaced apart from each other on an underlying structure, forming polysilicon spacers on sidewalls of the mold patterns, oxidizing the polysilicon spacers to form oxide layer patterns, and forming the minute pattern in a gap between the oxide layer patterns.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 17, 2010
    Inventors: Sung-Dae Suk, Dong-Won Kim, Yun-Young Yeoh
  • Publication number: 20090294864
    Abstract: A method of fabricating a MOSFET provides a plurality of nanowire-shaped channels in a self-aligned manner. According to the method, a first material layer and a semiconductor layer are sequentially formed on a semiconductor substrate. A first mask layer pattern is formed on the semiconductor layer, and recess regions are formed using the first mask layer pattern as an etch mask. A first reduced mask layer pattern is formed, and a filling material layer is formed on the surface of the substrate. A pair of second mask layer patterns are formed, and a first opening is formed. Then, the filling material layer is etched to form a second opening, the exposed first material layer is removed to expose the semiconductor layer, and a gate insulation layer and a gate electrode layer enclosing the exposed semiconductor layer are formed.
    Type: Application
    Filed: August 10, 2009
    Publication date: December 3, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-dae Suk, Sung-young Lee, Dong-won Kim, Sung-min Kim
  • Publication number: 20090275177
    Abstract: A semiconductor device with multiple channels includes a semiconductor substrate and a pair of conductive regions spaced apart from each other on the semiconductor substrate and having sidewalls that face to each other. A partial insulation layer is disposed on the semiconductor substrate between the conductive regions. A channel layer in the form of at least two bridges contacts the partial insulation layer, the at least two bridges being spaced apart from each other in a first direction and connecting the conductive regions with each other in a second direction that is at an angle relative to the first direction. A gate insulation layer is on the channel layer, and a gate electrode layer on the gate insulation layer and surrounding a portion of the channel layer.
    Type: Application
    Filed: July 15, 2009
    Publication date: November 5, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ming Li, Kyoung-hwan Yeo, Sung-min Kim, Sung-dae Suk, Dong-won Kim
  • Patent number: 7588977
    Abstract: A method of fabricating a MOSFET provides a plurality of nanowire-shaped channels in a self-aligned manner. According to the method, a first material layer and a semiconductor layer are sequentially formed on a semiconductor substrate. A first mask layer pattern is formed on the semiconductor layer, and recess regions are formed using the first mask layer pattern as an etch mask. A first reduced mask layer pattern is formed, and a filling material layer is formed on the surface of the substrate. A pair of second mask layer patterns are formed, and a first opening is formed. Then, the filling material layer is etched to form a second opening, the exposed first material layer is removed to expose the semiconductor layer, and a gate insulation layer and a gate electrode layer enclosing the exposed semiconductor layer are formed.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-dae Suk, Sung-young Lee, Dong-won Kim, Sung-min Kim
  • Patent number: 7579657
    Abstract: A semiconductor device with multiple channels includes a semiconductor substrate and a pair of conductive regions spaced apart from each other on the semiconductor substrate and having sidewalls that face to each other. A partial insulation layer is disposed on the semiconductor substrate between the conductive regions. A channel layer in the form of at least two bridges contacts the partial insulation layer, the at least two bridges being spaced apart from each other in a first direction and connecting the conductive regions with each other in a second direction that is at an angle relative to the first direction. A gate insulation layer is on the channel layer, and a gate electrode layer on the gate insulation layer and surrounding a portion of the channel layer.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 25, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ming Li, Kyoung-hwan Yeo, Sung-min Kim, Sung-dae Suk, Dong-won Kim
  • Publication number: 20080246021
    Abstract: A single electron transistor includes source/drain layers disposed apart on a substrate, at least one nanowire channel connecting the source/drain layers, a plurality of oxide channel areas in the nanowire channel, the oxide channel areas insulating at least one portion of the nanowire channel, a quantum dot in the portion of the nanowire channel insulated by the plurality of oxide channel areas, and a gate electrode surrounding the quantum dot.
    Type: Application
    Filed: October 3, 2007
    Publication date: October 9, 2008
    Inventors: Sung-Dae Suk, Kyoung-Hwan Yeo, Ming Li, Yun-Young Yeoh
  • Publication number: 20080233693
    Abstract: A complementary metal-oxide semiconductor (CMOS) device includes an NMOS thin body channel including a silicon epitaxial layer. An NMOS insulating layer is formed on a surface of the NMOS thin body channel and surrounds the NMOS thin body channel. An NMOS metal gate is formed on the NMOS insulating layer. The CMOS device further includes a p-channel metal-oxide semiconductor (PMOS) transistor including a PMOS thin body channel including a silicon epitaxial layer. A PMOS insulating layer is formed on a surface of and surrounds the PMOS thin body channel. A PMOS metal gate is formed on the PMOS insulating layer. The NMOS insulating layer includes a silicon oxide layer and the PMOS insulating layer includes an electron-trapping layer, the NMOS insulating layer includes a hole trapping dielectric layer and the PMOS insulating layer includes a silicon oxide layer, or the NMOS insulating layer includes a hole-trapping dielectric layer and the PMOS insulating layer includes an electron-trapping dielectric layer.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 25, 2008
    Inventors: Sung-young Lee, Sung-min Kim, Sung-dae Suk, Eun-jung Yun
  • Publication number: 20080079041
    Abstract: The gate-all-around (GAA) type semiconductor device may include source/drain layers, a nanowire channel, a gate electrode and an insulation layer pattern. The source/drain layers may be disposed at a distance in a first direction on a semiconductor substrate. The nanowire channel may connect the source/drain layers. The gate electrode may extend in a second direction substantially perpendicular to the first direction. The gate electrode may have a height in a third direction substantially perpendicular to the first and second directions and may partially surround the nanowire channel. The insulation layer pattern may be formed between and around the source/drain layers on the semiconductor substrate and may cover the nanowire channel and a portion of the gate electrode. Thus, a size of the gate electrode may be reduced, and/or a gate induced drain leakage (GIDL) and/or a gate leakage current may be reduced.
    Type: Application
    Filed: October 2, 2007
    Publication date: April 3, 2008
    Inventors: Sung-Dae Suk, Dong-Won Kim, Kyoung-Hwan Yeo
  • Patent number: 7271456
    Abstract: A semiconductor device may include a substrate and a fin shaped semiconductor region on the substrate. The fin shaped semiconductor region may include a channel region and first and second junction regions on opposite sides of the channel region. A gate electrode may be provided on the channel region of the fin shaped semiconductor region, and a stress inducing layer on the fin shaped semiconductor region.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: September 18, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-woo Oh, Dong-gun Park, Dong-won Kim, Sung-dae Suk
  • Publication number: 20070158679
    Abstract: A semiconductor device with multiple channels includes a semiconductor substrate and a pair of conductive regions spaced apart from each other on the semiconductor substrate and having sidewalls that face to each other. A partial insulation layer is disposed on the semiconductor substrate between the conductive regions. A channel layer in the form of at least two bridges contacts the partial insulation layer, the at least two bridges being spaced apart from each other in a first direction and connecting the conductive regions with each other in a second direction that is at an angle relative to the first direction. A gate insulation layer is on the channel layer, and a gate electrode layer on the gate insulation layer and surrounding a portion of the channel layer.
    Type: Application
    Filed: September 7, 2006
    Publication date: July 12, 2007
    Inventors: Ming Li, Kyoung-hwan Yeo, Sung-min Kim, Sung-dae Suk, Dong-won Kim
  • Publication number: 20070004124
    Abstract: A method of fabricating a MOSFET provides a plurality of nanowire-shaped channels in a self-aligned manner. According to the method, a first material layer and a semiconductor layer are sequentially formed on a semiconductor substrate. A first mask layer pattern is formed on the semiconductor layer, and recess regions are formed using the first mask layer pattern as an etch mask. A first reduced mask layer pattern is formed, and a filling material layer is formed on the surface of the substrate. A pair of second mask layer patterns are formed, and a first opening is formed. Then, the filling material layer is etched to form a second opening, the exposed first material layer is removed to expose the semiconductor layer, and a gate insulation layer and a gate electrode layer enclosing the exposed semiconductor layer are formed.
    Type: Application
    Filed: June 13, 2006
    Publication date: January 4, 2007
    Inventors: Sung-dae Suk, Sung-young Lee, Dong-won Kim, Sung-min Kim
  • Publication number: 20060125018
    Abstract: A complementary metal-oxide semiconductor (CMOS) device includes an NMOS thin body channel including a silicon epitaxial layer. An NMOS insulating layer is formed on a surface of the NMOS thin body channel and surrounds the NMOS thin body channel. An NMOS metal gate is formed on the NMOS insulating layer. The CMOS device further includes a p-channel metal-oxide semiconductor (PMOS) transistor including a PMOS thin body channel including a silicon epitaxial layer. A PMOS insulating layer is formed on a surface of and surrounds the PMOS thin body channel. A PMOS metal gate is formed on the PMOS insulating layer. The NMOS insulating layer includes a silicon oxide layer and the PMOS insulating layer includes an electron-trapping layer, the NMOS insulating layer includes a hole trapping dielectric layer and the PMOS insulating layer includes a silicon oxide layer, or the NMOS insulating layer includes a hole-trapping dielectric layer and the PMOS insulating layer includes an electron-trapping dielectric layer.
    Type: Application
    Filed: October 11, 2005
    Publication date: June 15, 2006
    Inventors: Sung-young Lee, Sung-min Kim, Sung-dae Suk, Eun-jung Yun
  • Publication number: 20060022268
    Abstract: A semiconductor device may include a substrate and a fin shaped semiconductor region on the substrate. The fin shaped semiconductor region may include a channel region and first and second junction regions on opposite sides of the channel region. A gate electrode may be provided on the channel region of the fin shaped semiconductor region, and a stress inducing layer on the fin shaped semiconductor region.
    Type: Application
    Filed: July 26, 2005
    Publication date: February 2, 2006
    Inventors: Chang-woo Oh, Dong-gun Park, Dong-won Kim, Sung-dae Suk