Patents by Inventor Sung-En Lin

Sung-En Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128364
    Abstract: A semiconductor device includes a fin structure, a metal gate stack, a barrier structure and an epitaxial source/drain region. The fin structure is over a substrate. The metal gate stack is across the fin structure. The barrier structure is on opposite sides of the metal gate stack. The barrier structure comprises one or more passivation layers and one or more barrier layers, and the one or more passivation layers have a material different from a material of the one or more barrier layers. The epitaxial source/drain region is over the barrier structure.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Ming LUNG, Chung-Ting KO, Ting-Hsiang CHANG, Sung-En LIN, Chi On CHUI
  • Patent number: 11955370
    Abstract: A system and methods of forming a dielectric material within a trench are described herein. In an embodiment of the method, the method includes introducing a first precursor into a trench of a dielectric layer, such that portions of the first precursor react with the dielectric layer and attach on sidewalls of the trench. The method further includes partially etching portions of the first precursor on the sidewalls of the trench to expose upper portions of the sidewalls of the trench. The method further includes introducing a second precursor into the trench, such that portions of the second precursor react with the remaining portions of the first precursor to form the dielectric material at the bottom of the trench.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Ting-Gang Chen, Sung-En Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui, Tai-Chun Huang, Chieh-Ping Wang
  • Publication number: 20240113201
    Abstract: Methods and structures for modulating an inner spacer profile include providing a fin having an epitaxial layer stack including a plurality of semiconductor channel layers interposed by a plurality of dummy layers. In some embodiments, the method further includes removing the plurality of dummy layers to form a first gap between adjacent semiconductor channel layers of the plurality of semiconductor channel layers. Thereafter, in some examples, the method includes conformally depositing a dielectric layer to substantially fill the first gap between the adjacent semiconductor channel layers. In some cases, the method further includes etching exposed lateral surfaces of the dielectric layer to form an etched-back dielectric layer that defines substantially V-shaped recesses. In some embodiments, the method further includes forming a substantially V-shaped inner spacer within the substantially V-shaped recesses.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Ching WANG, Wei-Yang LEE, Bo-Yu LAI, Chung-I YANG, Sung-En LIN
  • Patent number: 11948843
    Abstract: A semiconductor device includes a substrate, first and second semiconductor strips, a dummy fin structure, first and second channel layers, a gate structure, and crystalline and amorphous hard mask layers. The first and second semiconductor strips extend upwardly from the substrate and each has a length extending along a first direction. The dummy fin structure is laterally between the first and second semiconductor strips. The first and second channel layers extend in the first direction above the first and second semiconductor strips and are arranged in a second direction substantially perpendicular to the substrate. The crystalline hard mask layer extends upwardly from the dummy fin structure and has an U-shaped cross section. The amorphous hard mask layer is in the crystalline hard mask layer. The amorphous hard mask layer has an U-shaped cross section conformal to the U-shaped cross section of the crystalline hard mask layer.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting Ko, Sung-En Lin, Chi-On Chui
  • Publication number: 20240087947
    Abstract: A semiconductor device and method of manufacture are provided. In some embodiments isolation regions are formed by modifying a dielectric material of a dielectric layer such that a first portion of the dielectric layer is more readily removed by an etching process than a second portion of the dielectric layer. The modifying of the dielectric material facilitates subsequent processing steps that allow for the tuning of a profile of the isolation regions to a desired geometry based on the different material properties of the modified dielectric material.
    Type: Application
    Filed: January 10, 2023
    Publication date: March 14, 2024
    Inventors: Chung-Ting Ko, Yu-Cheng Shiau, Li-Jung Kuo, Sung-En Lin, Kuo-Chin Liu
  • Publication number: 20240079265
    Abstract: A method includes depositing a first material on a sidewall surface of a recess in a substrate, wherein the first material is a conductive material; after depositing the first material, depositing a second material on a bottom surface of the recess using a plasma-assisted deposition process; and after depositing the second material, removing the first material.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 7, 2024
    Inventors: Chung-Ting Ko, Sung-En Lin, Chi On Chui
  • Publication number: 20240063020
    Abstract: A method includes depositing a first mask over a target layer; forming a first mandrel and a second mandrel over the first mask; forming first spacers on the first mandrel and second spacers on the second mandrel; and selectively removing the second spacers while masking the first spacers. Masking the first spacers comprising covering the first spacers with a second mask and a capping layer over the second mask, and the capping layer comprises carbon. The method further includes patterning the first mask and transferring a pattern of the first mask to the target layer. Patterning the first mask comprises masking the first mask with the second mandrel, the first mandrel, and the first spacers.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Chun-Yu Kao, Sung-En Lin, Chia-Cheng Chao
  • Patent number: 11888049
    Abstract: Semiconductor structures and methods of forming the same are provided. A method according to the present disclosure includes forming a stack of epitaxial layers over a substrate, forming a first fin-like structure and a second fin-like structure from the stack, forming an isolation feature between the first fin-like structure and the second fin-like structure, forming a cladding layer over the first fin-like structure and the second fin-like structure, conformally depositing a first dielectric layer over the cladding layer, depositing a second dielectric layer over the first dielectric layer, planarizing the first dielectric layer and the second dielectric layer until the cladding layer are exposed, performing an etch process to etch the second dielectric layer to form a helmet recess, performing a trimming process to trim the first dielectric layer to widen the helmet recess, and depositing a helmet feature in the widened helmet recess.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jen-Hong Chang, Yuan-Ching Peng, Chung-Ting Ko, Kuo-Yi Chao, Chia-Cheng Chao, You-Ting Lin, Chih-Chung Chang, Yi-Hsiu Liu, Jiun-Ming Kuo, Sung-En Lin
  • Patent number: 11854819
    Abstract: The present disclosure provides methods of forming semiconductor devices. A method according to the present disclosure includes receiving a workpiece that includes a stack of semiconductor layers, depositing a first pad oxide layer on a germanium-containing top layer of the stack, depositing a second pad oxide layer on the first pad oxide layer, depositing a pad nitride layer on the second pad oxide layer, and patterning the stack using the first pad oxide layer, the second pad oxide layer, and the pad nitride layer as a hard mask layer. The depositing of the first pad oxide layer includes a first oxygen plasma power and the depositing of the second pad oxide layer includes a second oxygen plasma power greater than the first oxygen plasma power.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Hao Fu, Hung-Ju Chou, Che-Lun Chang, Jiun-Ming Kuo, Yuan-Ching Peng, Sung-En Lin, Nung-Che Cheng, Chunyao Wang
  • Patent number: 11848209
    Abstract: A method includes depositing a first mask over a target layer; forming a first mandrel and a second mandrel over the first mask; forming first spacers on the first mandrel and second spacers on the second mandrel; and selectively removing the second spacers while masking the first spacers. Masking the first spacers comprising covering the first spacers with a second mask and a capping layer over the second mask, and the capping layer comprises carbon. The method further includes patterning the first mask and transferring a pattern of the first mask to the target layer. Patterning the first mask comprises masking the first mask with the second mandrel, the first mandrel, and the first spacers.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Yu Kao, Sung-En Lin, Chia-Cheng Chao
  • Publication number: 20230386930
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a semiconductor fin over a substrate; forming an isolation feature adjacent semiconductor fin; recessing the isolation feature to form a recess; forming a metal-containing compound mask in the recess; depositing a stress layer over the metal-containing compound mask, such that the stress layer is in contact with a top surface of the metal-containing compound mask; and annealing the metal-containing compound mask when the stress layer is in contact with the top surface of the metal-containing compound mask.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting KO, Sung-En LIN, Chi On CHUI
  • Publication number: 20230378221
    Abstract: The present disclosure relates to an image sensor integrated chip (IC). The image sensor IC includes one or more interconnects arranged within an inter-level dielectric (ILD) structure on a first side of a substrate. An image sensing element is arranged within the substrate. Sidewalls of the substrate form one or more trenches extending from a second side of the substrate to within the substrate on opposing sides of the image sensing element. A dielectric structure is arranged on the sidewalls of the substrate that form the one or more trenches. A conductive core is arranged within the one or more trenches and is laterally separated from the substrate by the dielectric structure. The conductive core is electrically coupled to the one or more interconnects.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 23, 2023
    Inventors: Cheng-Ying Ho, Wen-De Wang, Kai-Chun Hsu, Sung-En Lin, Yuh-Ruey Huang, Jen-Cheng Liu
  • Patent number: 11810824
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a semiconductor fin over a substrate; forming an isolation feature adjacent semiconductor fin; recessing the isolation feature to form a recess; forming a metal-containing compound mask in the recess; depositing a stress layer over the metal-containing compound mask, such that the stress layer is in contact with a top surface of the metal-containing compound mask; and annealing the metal-containing compound mask when the stress layer is in contact with the top surface of the metal-containing compound mask.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: November 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting Ko, Sung-En Lin, Chi On Chui
  • Publication number: 20230317758
    Abstract: An optical device with isolation structures and a method of fabricating the same are disclosed. The optical device includes a substrate having a first surface and a second surface opposite to the first surface, first and second radiation sensing devices disposed in the substrate, a first isolation structure disposed in the substrate. The first isolation structure has a first surface and a second surface opposite to the first surface. The optical device further includes a second isolation structure disposed in the substrate and on the first surface of the first isolation structure. The second isolation structure includes a metal structure and a dielectric layer surrounding the metal structure. The second isolation structure vertically extends over the first surface of the substrate.
    Type: Application
    Filed: August 2, 2022
    Publication date: October 5, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ying Ho, Kuan-Hua Lin, Keng-Yu Chou, Kai-Chun Hsu, Sung-En Lin, Wen-De Wang, Jen-Cheng Liu
  • Publication number: 20230282723
    Abstract: A method for forming a semiconductor device structure is provided. The semiconductor device structure includes a first fin structure formed over a substrate, and the first fin structure includes a plurality of first nanostructures stacked in a vertical direction. The semiconductor device structure further includes a second fin structure formed over the substrate, and the second fin structure includes a plurality of second nanostructures stacked in a vertical direction. The semiconductor device structure further includes a dummy fin structure between the first fin structure and the second fin structure. The dummy fin structure includes a first etching stop layer between a bottom portion and a top portion.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Shao LIN, Yi-Hsiu LIU, Chih-Chung CHANG, Chung-Ting KO, Sung-En LIN
  • Publication number: 20230268384
    Abstract: A semiconductor structure according to the present disclosure includes a base fin over a substrate, a stack of nanostructures disposed directly over the base fin, a gate structure wrapping around each of the stack of nanostructures, an isolation feature disposed over the substrate and adjacent the base fin, and a dielectric fin disposed directly on the isolation feature. The dielectric includes in a bottom portion, a middle layer over the bottom portion and a top layer over the middle layer. The bottom portion includes an outer layer and an inner layer spaced apart from the gate structure and the isolation feature by the outer layer. The middle layer is in direct contact with top surfaces of the inner layer and the outer layer. The dielectric constant of the top layer of the dielectric fin is greater than the dielectric constant of the middle layer.
    Type: Application
    Filed: May 23, 2022
    Publication date: August 24, 2023
    Inventors: Tai-Jung Kuo, Zhen-Cheng Wu, Chung-Ting Ko, Sung-En Lin, Chi On Chui
  • Publication number: 20230154984
    Abstract: In an embodiment, a device includes: first source/drain regions; a first insulating fin between the first source/drain regions, the first insulating fin including a first lower insulating layer and a first upper insulating layer; second source/drain regions; and a second insulating fin between the second source/drain regions, the second insulating fin including a second lower insulating layer and a second upper insulating layer, the first lower insulating layer and the second lower insulating layer including the same dielectric material, the first upper insulating layer and the second upper insulating layer including different dielectric materials.
    Type: Application
    Filed: May 12, 2022
    Publication date: May 18, 2023
    Inventors: Chung-Ting Ko, Tai-Jung Kuo, Sung-En Lin, Zhen-Cheng Wu, Chi On Chui
  • Publication number: 20230122981
    Abstract: A method includes patterning a trench and depositing a first insulating material along sidewalls and a bottom surface of the trench using a conformal deposition process. Depositing the first insulating material includes forming a first seam between a first portion of the first insulating material on a first sidewall of the trench and a second portion of the first insulating material on a second sidewall of the trench. The method further includes etching the first insulating material below a top of the trench and depositing a second insulating material over the first insulating material and in the trench using a conformal deposition process. Depositing the second insulating material comprises forming a second seam between a first portion of the second insulating material on the first sidewall of the trench and a second portion of the second insulating material on a second sidewall of the trench.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Sung-En Lin, Chi On Chui, Fang-Yi Liao, Chunyao Wang, Yung-Cheng Lu
  • Publication number: 20230098409
    Abstract: Semiconductor structures and methods of forming the same are provided. A method according to the present disclosure includes forming a stack of epitaxial layers over a substrate, forming a first fin-like structure and a second fin-like structure from the stack, forming an isolation feature between the first fin-like structure and the second fin-like structure, forming a cladding layer over the first fin-like structure and the second fin-like structure, conformally depositing a first dielectric layer over the cladding layer, depositing a second dielectric layer over the first dielectric layer, planarizing the first dielectric layer and the second dielectric layer until the cladding layer are exposed, performing an etch process to etch the second dielectric layer to form a helmet recess, performing a trimming process to trim the first dielectric layer to widen the helmet recess, and depositing a helmet feature in the widened helmet recess.
    Type: Application
    Filed: December 8, 2022
    Publication date: March 30, 2023
    Inventors: Jen-Hong Chang, Yuan-Ching Peng, Chung-Ting Ko, Kuo-Yi Chao, Chia-Cheng Chao, You-Ting Lin, Chih-Chung Chang, Yi-Hsiu Liu, Jiun-Ming Kuo, Sung-En Lin
  • Publication number: 20230065708
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a semiconductor fin over a substrate; forming an isolation feature adjacent semiconductor fin; recessing the isolation feature to form a recess; forming a metal-containing compound mask in the recess; depositing a stress layer over the metal-containing compound mask, such that the stress layer is in contact with a top surface of the metal-containing compound mask; and annealing the metal-containing compound mask when the stress layer is in contact with the top surface of the metal-containing compound mask.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting KO, Sung-En LIN, Chi On CHUI