Patents by Inventor Supratik Guha

Supratik Guha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7948050
    Abstract: A semiconductor structure is provided, which includes multiple sections arranged along a longitudinal axis. Preferably, the semiconductor structure comprises a middle section and two terminal sections located at opposite ends of the middle section. A semiconductor core having a first dopant concentration preferably extends along the longitudinal axis through the middle section and the two terminal sections. A semiconductor shell having a second, higher dopant concentration preferably encircles a portion of the semiconductor core at the two terminal sections, but not at the middle section, of the semiconductor structure. It is particularly preferred that the semiconductor structure is a nanostructure having a cross-sectional dimension of not more than 100 nm.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Joerg Appenzeller, Supratik Guha, Emanuel Tutuc
  • Publication number: 20110109740
    Abstract: Techniques for analyzing performance of solar panels and/or cells are provided. In one aspect, a method for analyzing an infrared thermal image taken using an infrared camera is provided. The method includes the following steps. The infrared thermal image is converted to temperature data. Individual elements are isolated in the infrared thermal image. The temperature data for each isolated element is tabulated. A performance status of each isolated element is determined based on the tabulated temperature data. The individual elements can include solar panels and/or solar cells. In another aspect, an infrared diagnostic system is provided. The infrared diagnostic system includes an infrared camera which can be remotely positioned relative to one or more elements to be imaged; and a computer configured to receive thermal images from the infrared camera, via a communication link, and analyze the thermal images.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 12, 2011
    Applicant: International Business Machines Corporation
    Inventors: Supratik Guha, Yves C. Martin, Robert L. Sandstrom, Theodore Gerard van Kessel
  • Patent number: 7928514
    Abstract: The present invention provides a semiconductor structure including a semiconductor substrate having a plurality of source and drain diffusion regions located therein, each pair of source and drain diffusion regions are separated by a device channel. The structure further includes a first gate stack of pFET device located on top of some of the device channels, the first gate stack including a high-k gate dielectric, an insulating interlayer abutting the gate dielectric and a fully silicided metal gate electrode abutting the insulating interlayer, the insulating interlayer includes an insulating metal nitride that stabilizes threshold voltage and flatband voltage of the p-FET device to a targeted value and is one of aluminum oxynitride, boron nitride, boron oxynitride, gallium nitride, gallium oxynitride, indium nitride and indium oxynitride.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Jr., Cyril Cabral, Jr., Eduard A. Cartier, Matthew W. Copel, Martin M. Frank, Evgeni P. Gousev, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi K. Paruchuri
  • Patent number: 7923743
    Abstract: A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Nestor Alexander Bojarczuk, Jr., Douglas Andrew Buchanan, Supratik Guha, Vijay Narayanan, Lars-Ake Ragnarsson
  • Publication number: 20110042759
    Abstract: A field effect transistor (FET) includes a body region and a source region disposed at least partially in the body region. The FET also includes a drain region disposed at least partially in the body region and a molybdenum oxynitride (MoNO) gate. The FET also includes a dielectric having a high dielectric constant (k) disposed between the body region and the MoNO gate.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Michael P. Chudzik, Matthew W. Copel, Supratik Guha, Richard A. Haight, Vijay Narayanan, Martin P. O'Boyle, Vamsi K. Paruchuri
  • Patent number: 7888753
    Abstract: Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Sudhir Gowda, Supratik Guha, Hendrik F. Hamann, Emanuel Tutuc
  • Publication number: 20110019525
    Abstract: A memory cell includes at least one heater, and at least two leads and a heating element which is formed between at least two leads, a material of the heating element being different from a material of at least two leads such that a location of a hot spot in the heater is controllable based on a polarity of current in the heater and at least one storage medium formed adjacent to at least one heater.
    Type: Application
    Filed: October 8, 2010
    Publication date: January 27, 2011
    Applicant: International Business Machines Corporation
    Inventors: Supratik Guha, Hendrik F. Hamann
  • Patent number: 7863083
    Abstract: A method for fabricating a CMOS gate electrode by using Re, Rh, Pt, Ir or Ru metal and a CMOS structure that contains such gate electrodes are described. The work functions of these metals make them compatible with current pFET requirements. For instance, the metal can withstand the high hydrogen pressures necessary to produce properly passivated interfaces without undergoing chemical changes. The thermal stability of the metal on dielectric layers such as SiO2, Al2O3 and other suitable dielectric materials makes it compatible with post-processing temperatures up to 1000° C. A low temperature/low pressure CVD technique with Re2(CO)10 as the source material is used when Re is to be deposited.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ricky Amos, Douglas A. Buchanan, Cyril Cabral, Jr., Alessandro C. Callegari, Supratik Guha, Hyungjun Kim, Fenton R. McFeely, Vijay Narayanan, Kenneth P. Rodbell, John J. Yurkas
  • Publication number: 20100327259
    Abstract: Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.
    Type: Application
    Filed: July 15, 2010
    Publication date: December 30, 2010
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Sudhir Gowda, Supratik Guha, Hendrik F. Hamann, Emanuel Tutuc
  • Publication number: 20100330687
    Abstract: Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.
    Type: Application
    Filed: July 31, 2006
    Publication date: December 30, 2010
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali - Ardakani, Sudhir Gowda, Supratik Guha, Hendrik F. Hamann, Emanuel Tutuc
  • Patent number: 7847222
    Abstract: A heater includes at least two leads, and a heating element which is formed between the at least two leads, a material of the heating element being different from a material of the at least two leads such that a location of a hot spot in the heater is controllable based on a polarity of current in the heater.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Hendrik F. Hamann
  • Patent number: 7820474
    Abstract: A chemical vapor deposition (CVD) method for selectively depositing GeSb materials onto a surface of a substrate is provided in which a metal that is capable of forming an eutectic alloy with germanium is used to catalyze the growth of the GeSb materials. A structure is also provided that includes a GeSb material located on preselected regions of a substrate. In accordance with the present invention, the GeSb material is sandwiched between a lower metal layer used to catalyze the growth of the GeSb and an upper surface metal layer that forms during the growth of the GeSb material.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Fenton R. Mc Feely, John J. Yurkas
  • Patent number: 7821081
    Abstract: In one embodiment, the invention is a method and apparatus for flatband voltage tuning of high-k field effect transistors. One embodiment of a field effect transistor includes a substrate, a high-k dielectric layer deposited on the substrate, a gate electrode deposited on the high-k dielectric layer, and a dipole layer positioned between the substrate and the gate electrode, for shifting the threshold voltage of the field effect transistor.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Vijay Narayanan, Vamsi K. Paruchuri
  • Publication number: 20100218758
    Abstract: A solar energy alignment and collection system includes at least two solar energy receivers having a central focal point, with each of the at least two solar energy receivers generating an energy output. An actuation system is operatively coupled to the at least two solar energy receivers and is configured and disposed to shift the solar energy receivers along at least one axis. A control system, operatively linked to the solar receivers and the actuation system, senses the energy output of each solar energy receiver and shifts the actuation system along the at least one axis causing solar energy to be directed at the central focal point. When solar energy is directed at the central focal point, the energy output of each solar energy receiver is substantially identical.
    Type: Application
    Filed: November 20, 2009
    Publication date: September 2, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Supratik Guha, Yves C. Martin, Robert L. Sandstrom, Theodore G. van Kessel
  • Publication number: 20100218813
    Abstract: A multi-junction photovoltaic device includes a silicon substrate and a dielectric layer formed on the silicon substrate. A germanium layer is formed on the dielectric layer. The germanium includes a crystalline structure that is substantially similar to the crystalline structure of the silicon substrate. A first photovoltaic sub-cell includes a first plurality of doped semiconductor layers formed on the germanium layer. At least a second photovoltaic sub-cell includes a second plurality of doped semiconductor layers formed on the first photovoltaic sub-cell that is on the germanium layer that is on the dielectric layer.
    Type: Application
    Filed: July 31, 2009
    Publication date: September 2, 2010
    Applicant: International Business Machines Corporation
    Inventors: SUPRATIK GUHA, Harold J. Hovel
  • Publication number: 20100221866
    Abstract: Techniques for fabricating nanowire/microwire-based solar cells are provided. In one, a method for fabricating a solar cell is provided. The method includes the following steps. A doped substrate is provided. A monolayer of spheres is deposited onto the substrate. The spheres include nanospheres, microspheres or a combination thereof The spheres are trimmed to introduce space between individual spheres in the monolayer. The trimmed spheres are used as a mask to pattern wires in the substrate. The wires include nanowires, microwires or a combination thereof A doped emitter layer is formed on the patterned wires. A top contact electrode is deposited over the emitter layer. A bottom contact electrode is deposited on a side of the substrate opposite the wires.
    Type: Application
    Filed: June 8, 2009
    Publication date: September 2, 2010
    Applicant: International Business Machines Corporation
    Inventors: William Graham, Supratik Guha, Oki Gunawan, George S. Tulevski, Kejia Wang, Ying Zhang
  • Publication number: 20100218817
    Abstract: A solar concentration system includes an optically clear shell member having an outer surface and an inner surface, with the inner surface defining a hollow interior portion, a liquid contained within the hollow interior portion of the optically clear shell, and a solar collection system contained within the hollow interior portion of the optically clear shell. The solar collection system includes a tracking system configured and disposed to selectively shift within the hollow interior portion, a reflector member mounted to the tracking system, and a solar receiver mounted to the tracking system. The tracking system being configured and disposed orient the reflector member and the solar receiver to follow a path of the sun enhancing the collection of solar energy.
    Type: Application
    Filed: November 20, 2009
    Publication date: September 2, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Supratik Guha, Philip C. Hobbs, Yves C. Martin, Robert L. Sandstrom, Theodore G. van Kessel
  • Publication number: 20100218816
    Abstract: Electrical contact to the front side of a photovoltaic cell is provided by an array of conductive through-substrate vias, and optionally, an array of conductive blocks located on the front side of the photovoltaic cell. A dielectric liner provides electrical isolation of each conductive through-substrate via from the semiconductor material of the photovoltaic cell. A dielectric layer on the backside of the photovoltaic cell is patterned to cover a contiguous region including all of the conductive through-substrate vias, while exposing a portion of the backside of the photovoltaic cell. A conductive material layer is deposited on the back surface of the photovoltaic cell, and is patterned to form a first conductive wiring structure that electrically connects the conductive through-substrate vias and a second conductive wiring structure that provides electrical connection to the backside of the photovoltaic cell.
    Type: Application
    Filed: November 19, 2009
    Publication date: September 2, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Supratik Guha, Yves Martin, Naim Moumen, Robert L. Sandstrom, Theodore G. van Kessel
  • Publication number: 20100218815
    Abstract: A photovoltaic cell and a method of forming an electrode grid on a photovoltaic semiconductor substrate of a photovoltaic cell are disclosed. In one embodiment, the photovoltaic cell comprises a photovoltaic semiconductor substrate; a back electrode electrically connected to a back surface of the substrate; and a front electrode electrically connected to a front surface of the substrate. The substrate, back electrode, and front electrode form an electric circuit for generating an electric current when said substrate absorbs light. The front electrode is comprised of a metal grid defining a multitude of holes. These holes may be periodic, aperiodic, or partially periodic. The front electrode may be formed by depositing nanospheres on the substrate; forming a metallic layer on the substrate, around the nanospheres; and removing the nanospheres, leaving an electrode grid defining a multitude of holes on the substrate.
    Type: Application
    Filed: November 18, 2009
    Publication date: September 2, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Supratik Guha, Oki Gunawan
  • Patent number: 7750418
    Abstract: Semiconductor structures, such as, for example, field effect transistors (FETs) and/or metal-oxide-semiconductor capacitor (MOSCAPs), are provided in which the workfunction of a conductive electrode stack is changed by introducing metal impurities into a metal-containing material layer which, together with a conductive electrode, is present in the electrode stack. The choice of metal impurities depends on whether the electrode is to have an n-type workfunction or a p-type workfunction. The present invention also provides a method of fabricating such semiconductor structures.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Bruce B. Doris, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi K. Paruchuri, Yun Y. Wang, Keith Kwong Hon Wong