Patents by Inventor Susmit Singha Roy

Susmit Singha Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190348368
    Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
  • Patent number: 10410865
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan, Yihong Chen, Kelvin Chan, Srinivas Gandikota
  • Patent number: 10410869
    Abstract: Implementations described herein generally relate to a method for forming a metal layer and to a method for forming an oxide layer on the metal layer. In one implementation, the metal layer is formed on a seed layer, and the seed layer helps the metal in the metal layer nucleate with small grain size without affecting the conductivity of the metal layer. The metal layer may be formed using plasma enhanced chemical vapor deposition (PECVD) and nitrogen gas may be flowed into the processing chamber along with the precursor gases. In another implementation, a barrier layer is formed on the metal layer in order to prevent the metal layer from being oxidized during subsequent oxide layer deposition process. In another implementation, the metal layer is treated prior to the deposition of the oxide layer in order to prevent the metal layer from being oxidized.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Susmit Singha Roy, Kelvin Chan, Hien Minh Le, Sanjay Kamath, Abhijit Basu Mallick, Srinivas Gandikota, Karthik Janakiraman
  • Patent number: 10403542
    Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 3, 2019
    Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
  • Patent number: 10403502
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of hardmask films on a substrate. In one implementation, a method of forming a hardmask layer on a substrate is provided. The method comprises forming a seed layer on a substrate by supplying a seed layer gas mixture in a processing chamber. The method further includes forming a transition layer comprising tungsten, boron and carbon on the seed layer by supplying a transition layer gas mixture in the processing chamber. The method further includes forming a bulk hardmask layer comprising tungsten, boron and carbon on the transition layer by supplying a main deposition gas mixture in the processing chamber.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: September 3, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Eswaranand Venkatasubramanian, Abhijit Basu Mallick, Susmit Singha Roy, Takehito Koshizawa
  • Publication number: 20190259652
    Abstract: Methods comprising forming a film on at least one feature of a substrate surface are described. The film is expanded to fill the at least one feature and cause growth of the film from the at least one feature. Methods of forming self-aligned vias are also described.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 22, 2019
    Inventors: Susmit Singha Roy, Yihong Chen, Kelvin Chan, Abhijit Basu Mallick, Srinivas Gandikota, Pramit Manna
  • Publication number: 20190189506
    Abstract: In one embodiment, a method of forming a barrier layer is provided. The method includes positioning a substrate in a processing chamber, forming a barrier layer over the substrate and in contact with the underlayer, and annealing the substrate. The substrate comprises at least one underlayer having cobalt, tungsten, or copper. The barrier layer has a thickness of less than 70 angstroms.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 20, 2019
    Inventors: Susmit Singha Roy, Yihong Chen, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20190189456
    Abstract: Processing methods to etch metal oxide films with less etch residue are described. The methods comprise etching a metal oxide film with a metal halide etchant, and exposing the etch residue to a reductant to remove the etch residue. Some embodiments relate to etching tungsten oxide films. Some embodiments utilize tungsten halides to etch metal oxide films. Some embodiments utilize hydrogen gas as a reductant to remove etch residues.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: Amrita B. Mullick, Abhijit Basu Mallick, Srinivas Gandikota, Susmit Singha Roy, Yingli Rao, Regina Freed, Uday Mitra
  • Patent number: 10319624
    Abstract: Methods comprising forming a film on at least one feature of a substrate surface are described. The film is expanded to fill the at least one feature and cause growth of the film from the at least one feature. Methods of forming self-aligned vias are also described.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Susmit Singha Roy, Yihong Chen, Kelvin Chan, Abhijit Basu Mallick, Srinivas Gandikota, Pramit Manna
  • Patent number: 10312137
    Abstract: Embodiments of the present disclosure provide an apparatus and methods for forming a hardmask layer that may be utilized to transfer patterns or features to a film stack with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked semiconductor devices. In one embodiment, a method of forming a hardmask layer on a substrate includes forming a seed layer comprising boron on a film stack disposed on a substrate by supplying a seed layer gas mixture in a processing chamber, forming a transition layer comprising born and tungsten on the seed layer by supplying a transition layer gas mixture in the processing chamber, and forming a bulk hardmask layer on the transition layer by supplying a main deposition gas mixture in the processing chamber.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: June 4, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Eswaranand Venkatasubramanian, Susmit Singha Roy, Pramit Manna, Abhijit Basu Mallick
  • Publication number: 20190080915
    Abstract: Embodiments described herein relate to methods and materials for fabricating semiconductor device structures. In one example, a metal film stack includes a plurality of metal containing films and a plurality of metal derived films arranged in an alternating manner. In another example, a metal film stack includes a plurality of metal containing films which are modified into metal derived films. In certain embodiments, the metal film stacks are used in oxide/metal/oxide/metal (OMOM) structures for memory devices.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 14, 2019
    Inventors: Susmit Singha ROY, Yingli RAO, Srinivas GANDIKOTA
  • Publication number: 20190013202
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 10, 2019
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan
  • Publication number: 20180358260
    Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.
    Type: Application
    Filed: June 8, 2018
    Publication date: December 13, 2018
    Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
  • Patent number: 10083834
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: September 25, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan
  • Publication number: 20180218902
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of hardmask films on a substrate. In one implementation, a method of forming a hardmask layer on a substrate is provided. The method comprises forming a seed layer on a substrate by supplying a seed layer gas mixture in a processing chamber. The method further includes forming a transition layer comprising tungsten, boron and carbon on the seed layer by supplying a transition layer gas mixture in the processing chamber. The method further includes forming a bulk hardmask layer comprising tungsten, boron and carbon on the transition layer by supplying a main deposition gas mixture in the processing chamber.
    Type: Application
    Filed: January 29, 2018
    Publication date: August 2, 2018
    Inventors: Eswaranand VENKATASUBRAMANIAN, Abhijit Basu MALLICK, Susmit Singha ROY, Takehito KOSHIZAWA
  • Publication number: 20180096847
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Application
    Filed: September 28, 2017
    Publication date: April 5, 2018
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan
  • Publication number: 20180076032
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of thick hardmask films on a substrate. In one implementation, a method of forming a hardmask layer on a substrate is provided. The method comprises applying a chucking voltage to a substrate positioned on an electrostatic chuck in a processing chamber, forming a seed layer comprising boron on a film stack disposed on a substrate by supplying a seed layer gas mixture in the processing chamber while maintaining the chucking voltage, forming a transition layer comprising boron and tungsten on the seed layer by supplying a transition layer gas mixture in the processing chamber and forming a bulk hardmask layer on the transition layer by supplying a main deposition gas mixture in the processing chamber.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: Jiarui WANG, Prashant Kumar KULSHRESHTHA, Eswaranand VENKATASUBRAMANIAN, Susmit Singha ROY, Kwangduk Douglas LEE
  • Publication number: 20170372953
    Abstract: Implementations described herein generally relate to a method for forming a metal layer and to a method for forming an oxide layer on the metal layer. In one implementation, the metal layer is formed on a seed layer, and the seed layer helps the metal in the metal layer nucleate with small grain size without affecting the conductivity of the metal layer. The metal layer may be formed using plasma enhanced chemical vapor deposition (PECVD) and nitrogen gas may be flowed into the processing chamber along with the precursor gases. In another implementation, a barrier layer is formed on the metal layer in order to prevent the metal layer from being oxidized during subsequent oxide layer deposition process. In another implementation, the metal layer is treated prior to the deposition of the oxide layer in order to prevent the metal layer from being oxidized.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 28, 2017
    Inventors: Susmit Singha ROY, Kelvin CHAN, Hien Minh LE, Sanjay KAMATH, Abhijit Basu MALLICK, Srinivas GANDIKOTA, Karthik JANAKIRAMAN
  • Publication number: 20170358483
    Abstract: Methods comprising forming a film on at least one feature of a substrate surface are described. The film is expanded to fill the at least one feature and cause growth of the film from the at least one feature. Methods of forming self-aligned vias are also described.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 14, 2017
    Inventors: Susmit Singha Roy, Yihong Chen, Kelvin Chan, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20170352586
    Abstract: Embodiments of the present disclosure provide an apparatus and methods for forming a hardmask layer that may be utilized to transfer patterns or features to a film stack with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked semiconductor devices. In one embodiment, a method of forming a hardmask layer on a substrate includes forming a seed layer comprising boron on a film stack disposed on a substrate by supplying a seed layer gas mixture in a processing chamber, forming a transition layer comprising born and tungsten on the seed layer by supplying a transition layer gas mixture in the processing chamber, and forming a bulk hardmask layer on the transition layer by supplying a main deposition gas mixture in the processing chamber.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 7, 2017
    Inventors: Eswaranand VENKATASUBRAMANIAN, Susmit Singha ROY, Pramit MANNA, Abhijit Basu MALLICK