Patents by Inventor Szuya S. LIAO

Szuya S. LIAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088143
    Abstract: Self-aligned gate endcap (SAGE) architectures without fin end gaps, and methods of fabricating self-aligned gate endcap (SAGE) architectures without fin end gaps, are described. In an example, an integrated circuit structure includes a semiconductor fin having a cut along a length of the semiconductor fin. A gate endcap isolation structure has a first portion parallel with the length of the semiconductor fin and is spaced apart from the semiconductor fin. The gate endcap isolation structure also has a second portion in a location of the cut of the semiconductor fin and in contact with the semiconductor fin.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Szuya S. Liao, Scott B. CLENDENNING, Jessica TORRES, Lukas BAUMGARTEL, Kiran CHIKKADI, Diane LANCASTER, Matthew V. METZ, Florian GSTREIN, Martin M. MITAN, Rami HOURANI
  • Patent number: 11908940
    Abstract: A FET including a hybrid gate spacer separating a gate electrode from at least one of a source, a drain, or source/drain contact metallization. The hybrid spacer may include a low-k dielectric material for a reduction in parasitic capacitance. The hybrid spacer may further include one or more other dielectric materials of greater relative permittivity that may protect one or more surfaces of the low-k dielectric material from damage by subsequent transistor fabrication operations. The hybrid spacer may include a low-k dielectric material separating a lower portion of a gate electrode sidewall from the source/drain terminal, and a dielectric spacer cap separating to an upper portion of the gate electrode sidewall from the source/drain terminal. The hybrid spacer may have a lower total capacitance than conventional spacers while still remaining robust to downstream fabrication processes. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Pratik A. Patel
  • Patent number: 11901457
    Abstract: Fin shaping, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure above a substrate. The protruding fin portion has substantially vertical upper sidewalls and outwardly tapered lower sidewalls. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack, and a second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Rahul Pandey, Rishabh Mehandru, Anupama Bowonder, Pratik Patel
  • Publication number: 20240038857
    Abstract: Solid assemblies having a composite dielectric spacer and processes for fabricating the solid assemblies are provided. The composite dielectric spacer can include, in some embodiments, a first dielectric layer and a second dielectric layer having a mutual interface. The composite dielectric spacer can separate a contact member from a conductive interconnect member, thus reducing the capacitance between such members with respect to solid assemblies that include one of first dielectric layer or the second dielectric layer. The composite dielectric spacer can permit maintaining the real estate of an interface between the conductive interconnect and a trench contact member that has an interface with a carrier-doped epitaxial layer embodying or constituting a source contact region or a drain contact region of a field effect transistor. The trench contact member can form another interface with the conductive interconnect member, providing a satisfactory contact resistance therebetween.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 1, 2024
    Inventors: Rishabh MEHANDRU, Pratik A. PATEL, Ralph T. TROEGER, Szuya S. LIAO
  • Patent number: 11887860
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of semiconductor fins, which in turn can be used to form non-planar transistor structures. The techniques include a mid-process removal of one or more partially-formed fins. The resulting integrated circuit structure includes a plurality of semiconductor fins having relatively uniform dimensions (e.g., fin width and trough depth). In an embodiment, the fin forming procedure includes partially forming a plurality of fins, using a selective etch stop built into the semiconductor structure in which the fins are being formed. One or more of the partially-formed fins are removed via sacrificial fin cut mask layer(s). After fin removal, the process continues by further etching trenches between the partially-formed fins (deep etch) to form portion of fins that will ultimately include transistor channel portion. A liner material may be deposited to protect the partially-formed fins during this subsequent deep trench etch.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Mehmet O. Baykan, Anurag Jain, Szuya S. Liao
  • Patent number: 11869889
    Abstract: Self-aligned gate endcap (SAGE) architectures without fin end gaps, and methods of fabricating self-aligned gate endcap (SAGE) architectures without fin end gaps, are described. In an example, an integrated circuit structure includes a semiconductor fin having a cut along a length of the semiconductor fin. A gate endcap isolation structure has a first portion parallel with the length of the semiconductor fin and is spaced apart from the semiconductor fin. The gate endcap isolation structure also has a second portion in a location of the cut of the semiconductor fin and in contact with the semiconductor fin.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Scott B. Clendenning, Jessica Torres, Lukas Baumgartel, Kiran Chikkadi, Diane Lancaster, Matthew V. Metz, Florian Gstrein, Martin M. Mitan, Rami Hourani
  • Patent number: 11854894
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Valluri R. Rao, Patrick Morrow, Rishabh Mehandru, Doug Ingerly, Kimin Jun, Kevin O'Brien, Paul Fischer, Szuya S. Liao, Bruce Block
  • Patent number: 11824097
    Abstract: Solid assemblies having a composite dielectric spacer and processes for fabricating the solid assemblies are provided. The composite dielectric spacer can include, in some embodiments, a first dielectric layer and a second dielectric layer having a mutual interface. The composite dielectric spacer can separate a contact member from a conductive interconnect member, thus reducing the capacitance between such members with respect to solid assemblies that include one of first dielectric layer or the second dielectric layer. The composite dielectric spacer can permit maintaining the real estate of an interface between the conductive interconnect and a trench contact member that has an interface with a carrier-doped epitaxial layer embodying or constituting a source contact region or a drain contact region of a field effect transistor. The trench contact member can form another interface with the conductive interconnect member, providing a satisfactory contact resistance therebetween.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Pratik A. Patel, Ralph T. Troeger, Szuya S. Liao
  • Publication number: 20230343599
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of semiconductor fins, which in turn can be used to form non-planar transistor structures. The techniques include a mid-process removal of one or more partially-formed fins. The resulting integrated circuit structure includes a plurality of semiconductor fins having relatively uniform dimensions (e.g., fin width and trough depth). In an embodiment, the fin forming procedure includes partially forming a plurality of fins, using a selective etch stop built into the semiconductor structure in which the fins are being formed. One or more of the partially-formed fins are removed via sacrificial fin cut mask layer(s). After fin removal, the process continues by further etching trenches between the partially-formed fins (deep etch) to form portion of fins that will ultimately include transistor channel portion. A liner material may be deposited to protect the partially-formed fins during this subsequent deep trench etch.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Inventors: Mehmet O. BAYKAN, Anurag JAIN, Szuya S. LIAO
  • Publication number: 20230215934
    Abstract: Confined epitaxial regions for semiconductor devices and methods of fabricating semiconductor devices having confined epitaxial regions are described. For example, a semiconductor structure includes a plurality of parallel semiconductor fins disposed above and continuous with a semiconductor substrate. An isolation structure is disposed above the semiconductor substrate and adjacent to lower portions of each of the plurality of parallel semiconductor fins. An upper portion of each of the plurality of parallel semiconductor fins protrudes above an uppermost surface of the isolation structure. Epitaxial source and drain regions are disposed in each of the plurality of parallel semiconductor fins adjacent to a channel region in the upper portion of the semiconductor fin. The epitaxial source and drain regions do not extend laterally over the isolation structure.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Szuya S. LIAO, Michael L. HATTENDORF, Tahir GHANI
  • Publication number: 20230207560
    Abstract: An integrated circuit (IC) structure, an IC device, an IC device assembly, and a method of forming the same. The IC structure includes a transistor device on a substrate comprising: a gate structure including a metal, the gate structure on a channel structure; a source structure in a first trench at a first side of the gate structure; a drain structure in a second trench at a second side of the gate structure; a capping layer on individual ones of the source structure and of the drain structure. The capping layer comprising a semiconductor material of a same group as a semiconductor material of a corresponding one of the source structure or of the drain structure, wherein an isotope of a p-type dopant in the capping layer represents an atomic percentage of at least about 95% of a p-type isotope content of the capping layer; and metal contact structures coupled to respective ones of the source structure and of the drain structure.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Applicant: Intel Corporation
    Inventors: Cory C. Bomberger, Nicholas Minutillo, Ryan Cory Haislmaier, Yulia Tolstova, Yoon Jung Chang, Tahir Ghani, Szuya S. Liao, Anand Murthy, Pratik Patel
  • Patent number: 11688792
    Abstract: Dual self-aligned gate endcap (SAGE) architectures, and methods of fabricating dual self-aligned gate endcap (SAGE) architectures, are described. In an example, an integrated circuit structure includes a first semiconductor fin having a cut along a length of the first semiconductor fin. A second semiconductor fin is parallel with the first semiconductor fin. A first gate endcap isolation structure is between the first semiconductor fin and the second semiconductor fin. A second gate endcap isolation structure is in a location of the cut along the length of the first semiconductor fin.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Sairam Subramanian, Walid M. Hafez, Sridhar Govindaraju, Mark Liu, Szuya S. Liao, Chia-Hong Jan, Nick Lindert, Christopher Kenyon
  • Publication number: 20230178594
    Abstract: Self-aligned gate edge and local interconnect structures and methods of fabricating self-aligned gate edge and local interconnect structures are described. In an example, a semiconductor structure includes a semiconductor fin disposed above a substrate and having a length in a first direction. A gate structure is disposed over the semiconductor fin, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate edge isolation structures is centered with the semiconductor fin. A first of the pair of gate edge isolation structures is disposed directly adjacent to the first end of the gate structure, and a second of the pair of gate edge isolation structures is disposed directly adjacent to the second end of the gate structure.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 8, 2023
    Inventors: Milton Clair Webb, Mark Bohr, Tahir Ghani, Szuya S. Liao
  • Patent number: 11640988
    Abstract: Confined epitaxial regions for semiconductor devices and methods of fabricating semiconductor devices having confined epitaxial regions are described. For example, a semiconductor structure includes a plurality of parallel semiconductor fins disposed above and continuous with a semiconductor substrate. An isolation structure is disposed above the semiconductor substrate and adjacent to lower portions of each of the plurality of parallel semiconductor fins. An upper portion of each of the plurality of parallel semiconductor fins protrudes above an uppermost surface of the isolation structure. Epitaxial source and drain regions are disposed in each of the plurality of parallel semiconductor fins adjacent to a channel region in the upper portion of the semiconductor fin. The epitaxial source and drain regions do not extend laterally over the isolation structure.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Michael L. Hattendorf, Tahir Ghani
  • Publication number: 20230131126
    Abstract: Fin shaping, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure above a substrate. The protruding fin portion has substantially vertical upper sidewalls and outwardly tapered lower sidewalls. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack, and a second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Inventors: Szuya S. LIAO, Rahul PANDEY, Rishabh MEHANDRU, Anupama BOWONDER, Pratik PATEL
  • Patent number: 11605632
    Abstract: Unidirectional self-aligned gate endcap (SAGE) architectures with gate-orthogonal walls, and methods of fabricating unidirectional self-aligned gate endcap (SAGE) architectures with gate-orthogonal walls, are described. In an example, integrated circuit structure includes a first semiconductor fin having a cut along a length of the first semiconductor fin. A second semiconductor fin has a cut along a length of the second semiconductor fin. A gate endcap isolation structure is between the first semiconductor fin and the second semiconductor fin. The gate endcap isolation structure has a substantially uniform width along the lengths of the first and second semiconductor fins.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Sridhar Govindaraju, Mark Liu, Szuya S. Liao, Chia-Hong Jan, Nick Lindert, Christopher Kenyon, Sairam Subramanian
  • Patent number: 11581315
    Abstract: Self-aligned gate edge trigate and finFET devices and methods of fabricating self-aligned gate edge trigate and finFET devices are described. In an example, a semiconductor structure includes a plurality of semiconductor fins disposed above a substrate and protruding through an uppermost surface of a trench isolation region. A gate structure is disposed over the plurality of semiconductor fins. The gate structure defines a channel region in each of the plurality of semiconductor fins. Source and drain regions are on opposing ends of the channel regions of each of the plurality of semiconductor fins, at opposing sides of the gate structure. The semiconductor structure also includes a plurality of gate edge isolation structures. Individual ones of the plurality of gate edge isolation structures alternate with individual ones of the plurality of semiconductor fins.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Biswajeet Guha, Tahir Ghani, Christopher N. Kenyon, Leonard P. Guler
  • Patent number: 11563081
    Abstract: Self-aligned gate edge and local interconnect structures and methods of fabricating self-aligned gate edge and local interconnect structures are described. In an example, a semiconductor structure includes a semiconductor fin disposed above a substrate and having a length in a first direction. A gate structure is disposed over the semiconductor fin, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate edge isolation structures is centered with the semiconductor fin. A first of the pair of gate edge isolation structures is disposed directly adjacent to the first end of the gate structure, and a second of the pair of gate edge isolation structures is disposed directly adjacent to the second end of the gate structure.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 24, 2023
    Assignee: Daedalus Prime LLC
    Inventors: Milton Clair Webb, Mark Bohr, Tahir Ghani, Szuya S. Liao
  • Patent number: 11532724
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Scott B. Clendenning, Szuya S. Liao, Florian Gstrein, Rami Hourani, Patricio E. Romero, Grant M. Kloster, Martin M. Mitan
  • Publication number: 20220310818
    Abstract: Self-aligned gate endcap (SAGE) architectures with reduced or removed caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with reduced or removed caps, are described. In an example, an integrated circuit structure includes a first gate electrode over a first semiconductor fin. A second gate electrode is over a second semiconductor fin. A gate endcap isolation structure is between the first gate electrode and the second gate electrode, the gate endcap isolation structure having a higher-k dielectric cap layer on a lower-k dielectric wall. A local interconnect is on the first gate electrode, on the higher-k dielectric cap layer, and on the second gate electrode, the local interconnect having a bottommost surface above an uppermost surface of the higher-k dielectric cap layer.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 29, 2022
    Inventors: Seung Hoon SUNG, Tristan TRONIC, Szuya S. LIAO, Jack T. KAVALIEROS