Patents by Inventor Tahir Ghani
Tahir Ghani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11658222Abstract: An embodiment includes an apparatus comprising: a substrate; a thin film transistor (TFT) comprising: source, drain, and gate contacts; a semiconductor material, comprising a channel, between the substrate and the gate contact; a gate dielectric layer between the gate contact and the channel; and an additional layer between the channel and the substrate; wherein (a)(i) the channel includes carriers selected from the group consisting of hole carriers or electron carriers, (a)(ii) the additional layer includes an insulator material that includes charged particles having a polarity equal to a polarity of the carriers. Other embodiments are described herein.Type: GrantFiled: September 27, 2017Date of Patent: May 23, 2023Assignee: Intel CorporationInventors: Abhishek A. Sharma, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Gilbert Dewey, Shriram Shivaraman, Sean T. Ma, Benjamin Chu-Kung
-
Publication number: 20230154793Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: ApplicationFiled: January 17, 2023Publication date: May 18, 2023Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
-
Patent number: 11652047Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: May 16, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Ting Chen, Vinaykumar V. Hadagali
-
Publication number: 20230144607Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes first and second gate dielectric layers over a fin. First and second gate electrodes are over the first and second gate dielectric layers, respectively, the first and second gate electrodes both having an insulating cap having a top surface. First dielectric spacer are adjacent the first side of the first gate electrode. A trench contact structure is over a semiconductor source or drain region adjacent first and second dielectric spacers, the trench contact structure comprising an insulating cap on a conductive structure, the insulating cap of the trench contact structure having a top surface substantially co-planar with the insulating caps of the first and second gate electrodes.Type: ApplicationFiled: January 5, 2023Publication date: May 11, 2023Inventors: Andrew W. YEOH, Tahir GHANI, Atul MADHAVAN, Michael L. HATTENDORF, Christopher P. AUTH
-
Patent number: 11646359Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A first isolation structure separates a first end of a first portion of the fin from a first end of a second portion of the fin, the first end of the first portion of the fin having a depth. A gate structure is over the top of and laterally adjacent to the sidewalls of a region of the first portion of the fin. A second isolation structure is over a second end of a first portion of the fin, the second end of the first portion of the fin having a depth different than the depth of the first end of the first portion of the fin.Type: GrantFiled: April 16, 2021Date of Patent: May 9, 2023Assignee: Intel CorporationInventors: Tahir Ghani, Byron Ho, Curtis W. Ward, Michael L. Hattendorf, Christopher P. Auth
-
Patent number: 11640985Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin comprising silicon, the fin having a lower fin portion and an upper fin portion. A first insulating layer is directly on sidewalls of the lower fin portion of the fin, wherein the first insulating layer is a non-doped insulating layer comprising silicon and oxygen. A second insulating layer is directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin, the second insulating layer comprising silicon and nitrogen. A dielectric fill material is directly laterally adjacent to the second insulating layer directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin.Type: GrantFiled: January 15, 2021Date of Patent: May 2, 2023Assignee: Intel CorporationInventors: Michael L. Hattendorf, Curtis Ward, Heidi M. Meyer, Tahir Ghani, Christopher P. Auth
-
Patent number: 11640988Abstract: Confined epitaxial regions for semiconductor devices and methods of fabricating semiconductor devices having confined epitaxial regions are described. For example, a semiconductor structure includes a plurality of parallel semiconductor fins disposed above and continuous with a semiconductor substrate. An isolation structure is disposed above the semiconductor substrate and adjacent to lower portions of each of the plurality of parallel semiconductor fins. An upper portion of each of the plurality of parallel semiconductor fins protrudes above an uppermost surface of the isolation structure. Epitaxial source and drain regions are disposed in each of the plurality of parallel semiconductor fins adjacent to a channel region in the upper portion of the semiconductor fin. The epitaxial source and drain regions do not extend laterally over the isolation structure.Type: GrantFiled: July 30, 2021Date of Patent: May 2, 2023Assignee: Intel CorporationInventors: Szuya S. Liao, Michael L. Hattendorf, Tahir Ghani
-
Patent number: 11637185Abstract: Embodiments herein describe techniques for an integrated circuit that includes a substrate, a semiconductor device on the substrate, and a contact stack above the substrate and coupled to the semiconductor device. The contact stack includes a contact metal layer, and a semiconducting oxide layer adjacent to the contact metal layer. The semiconducting oxide layer includes a semiconducting oxide material, while the contact metal layer includes a metal with a sufficient Schottky-barrier height to induce an interfacial electric field between the semiconducting oxide layer and the contact metal layer to reject interstitial hydrogen from entering the semiconductor device through the contact stack. Other embodiments may be described and/or claimed.Type: GrantFiled: September 25, 2018Date of Patent: April 25, 2023Assignee: Intel CorporationInventors: Justin Weber, Harold Kennel, Abhishek Sharma, Christopher Jezewski, Matthew V. Metz, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Van H. Le, Arnab Sen Gupta
-
Patent number: 11631673Abstract: Non-planar semiconductor devices having doped sub-fin regions and methods of fabricating non-planar semiconductor devices having doped sub-fin regions are described. For example, a method of fabricating a semiconductor structure involves forming a plurality of semiconductor fins above a semiconductor substrate. A solid state dopant source layer is formed above the semiconductor substrate, conformal with the plurality of semiconductor fins. A dielectric layer is formed above the solid state dopant source layer. The dielectric layer and the solid state dopant source layer are recessed to approximately a same level below a top surface of the plurality of semiconductor fins, exposing protruding portions of each of the plurality of semiconductor fins above sub-fin regions of each of the plurality of semiconductor fins. The method also involves driving dopants from the solid state dopant source layer into the sub-fin regions of each of the plurality of semiconductor fins.Type: GrantFiled: February 23, 2021Date of Patent: April 18, 2023Assignee: Tahoe Research, Ltd.Inventors: Tahir Ghani, Salman Latif, Chanaka D. Munasinghe
-
Patent number: 11631737Abstract: Embodiments of the invention include nanowire and nanoribbon transistors and methods of forming such transistors. According to an embodiment, a method for forming a microelectronic device may include forming a multi-layer stack within a trench formed in a shallow trench isolation (STI) layer. The multi-layer stack may comprise at least a channel layer, a release layer formed below the channel layer, and a buffer layer formed below the channel layer. The STI layer may be recessed so that a top surface of the STI layer is below a top surface of the release layer. The exposed release layer from below the channel layer by selectively etching away the release layer relative to the channel layer.Type: GrantFiled: December 24, 2014Date of Patent: April 18, 2023Assignee: Intel CorporationInventors: Sanaz K. Gardner, Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Jack T. Kavalieros, Chandra S. Mohapatra, Anand S. Murthy, Nadia M. Rahhal-Orabi, Nancy M. Zelick, Tahir Ghani
-
Publication number: 20230116170Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.Type: ApplicationFiled: November 28, 2022Publication date: April 13, 2023Inventors: Roza KOTLYAR, Rishabh MEHANDRU, Stephen CEA, Biswajeet GUHA, Dax CRUM, Tahir GHANI
-
Publication number: 20230111329Abstract: Techniques and mechanisms to impose stress on a transistor which includes a channel region and a source or drain region each in a fin structure. In an embodiment, a gate structure of the transistor extends over the fin structure, wherein a first spacer portion is at a sidewall of the gate structure and a second spacer portion adjoins the first spacer portion. Either or both of two features are present at or under respective bottom edges of the spacer portions. One of the features includes a line of discontinuity on the fin structure. The other feature includes a concentration of a dopant in the second spacer portion being greater than a concentration of the dopant in the source or drain region. In another embodiment, the fin structure is disposed on a buffer layer, wherein stress on the channel region is imposed at least in part with the buffer layer.Type: ApplicationFiled: November 29, 2022Publication date: April 13, 2023Applicant: Intel CorporationInventors: Rishabh Mehandru, Stephen M. Cea, Tahir Ghani, Anand S. Murthy
-
Publication number: 20230114214Abstract: Single-sided nanosheet transistor structures comprising an upper channel material over a lower channel material. A first dielectric material is formed adjacent to a first sidewall of the upper and lower channel materials. A second dielectric material is formed adjacent to a second sidewall of the upper and lower channel materials. The first sidewall of the upper and lower channel materials is exposed by etching at least a portion of the first dielectric material. A sidewall portion of the second dielectric material may be exposed by removing sacrificial material from between the upper and lower channel materials. A single-sided gate stack may then be formed in direct contact with the first sidewall of the upper and lower channel materials, and in contact with the sidewall portion of the second dielectric material.Type: ApplicationFiled: September 24, 2021Publication date: April 13, 2023Applicant: Intel CorporationInventors: Stephen Cea, Biswajeet Guha, Leonard Guler, Tahir Ghani, Sean Ma
-
Patent number: 11621354Abstract: Integrated circuit structures having partitioned source or drain contact structures, and methods of fabricating integrated circuit structures having partitioned source or drain contact structures, are described. For example, an integrated circuit structure includes a fin. A gate stack is over the fin. A first epitaxial source or drain structure is at a first end of the fin. A second epitaxial source or drain structure is at a second end of the fin. A conductive contact structure is coupled to one of the first or the second epitaxial source or drain structures. The conductive contact structure has a first portion partitioned from a second portion.Type: GrantFiled: September 5, 2018Date of Patent: April 4, 2023Assignee: Intel CorporationInventors: Mauro J. Kobrinsky, Stephanie Bojarski, Babita Dhayal, Biswajeet Guha, Tahir Ghani
-
Publication number: 20230101725Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise germanium and boron, and a protective layer comprises silicon, and germanium that at least partially covers the epitaxial source or drain structures. A conductive contact comprising titanium silicide is on the epitaxial source or drain structures.Type: ApplicationFiled: September 24, 2021Publication date: March 30, 2023Inventors: Debaleena NANDI, Mauro J. KOBRINSKY, Gilbert DEWEY, Chi-hing CHOI, Harold W. Kennel, Brian J. KRIST, Ashkar ALIYARUKUNJU, Cory BOMBERGER, Rushabh SHAH, Rishabh MEHANDRU, Stephen M. CEA, Chanaka MUNASINGHE, Anand S. MURTHY, Tahir GHANI
-
Publication number: 20230095191Abstract: Methods, transistors, and systems are discussed related to anisotropically etching back deposited epitaxial source and drain semiconductor materials for reduced lateral source and drain spans in the fabricated transistors. Such lateral width reduction of the source and drain materials enables improved transistor scaling and perturbation reduction in the resultant source and drain semiconductor materials.Type: ApplicationFiled: September 24, 2021Publication date: March 30, 2023Applicant: Intel CorporationInventors: Koustav Ganguly, Ryan Keech, Anand Murthy, Mohammad Hasan, Pratik Patel, Tahir Ghani, Subrina Rafique
-
Patent number: 11616015Abstract: Transistor cell architectures including both front-side and back-side structures. A transistor may include one or more semiconductor fins with a gate stack disposed along a sidewall of a channel portion of the fin. One or more source/drain regions of the fin are etched to form recesses with a depth below the channel region. The recesses may extend through the entire fin height. Source/drain semiconductor is then deposited within the recess, coupling the channel region to a deep source/drain. A back-side of the transistor is processed to reveal the deep source/drain semiconductor material. One or more back-side interconnect metallization levels may couple to the deep source/drain of the transistor.Type: GrantFiled: December 18, 2020Date of Patent: March 28, 2023Assignee: Intel CorporationInventors: Patrick Morrow, Mauro J. Kobrinsky, Mark T. Bohr, Tahir Ghani, Rishabh Mehandru
-
Publication number: 20230088753Abstract: Gate-all-around integrated circuit structures having a doped subfin, and methods of fabricating gate-all-around integrated circuit structures having a doped subfin, are described. For example, an integrated circuit structure includes a subfin structure having well dopants. A vertical arrangement of horizontal semiconductor nanowires is over the subfin structure. A gate stack is surrounding a channel region of the vertical arrangement of horizontal semiconductor nanowires, the gate stack overlying the subfin structure. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires.Type: ApplicationFiled: September 23, 2021Publication date: March 23, 2023Inventors: Stephen M. Cea, Aaron D. Lilak, Patrick Keys, Cory Weber, Rishabh Mehandru, Anand S. Murthy, Biswajeet Guha, Mohammad Hasan, William Hsu, Tahir Ghani, Chang Wan Han, Kihoon Park, Sabih Omar
-
Publication number: 20230093657Abstract: Integrated circuit structures having a dielectric gate wall and a dielectric gate plug, and methods of fabricating integrated circuit structures having a dielectric gate wall and a dielectric gate plug, are described. For example, an integrated circuit structure includes a sub-fin having a portion protruding above a shallow trench isolation (STI) structure. A plurality of horizontally stacked nanowires is over the sub-fin. A gate dielectric material layer is over the protruding portion of the sub-fin, over the STI structure, and surrounding the horizontally stacked nanowires. A conductive gate layer is over the gate dielectric material layer. A conductive gate fill material is over the conductive gate layer. A dielectric gate wall is laterally spaced apart from the sub-fin and the plurality of horizontally stacked nanowires, the dielectric gate wall on the STI structure. A dielectric gate plug is on the dielectric gate wall.Type: ApplicationFiled: September 22, 2021Publication date: March 23, 2023Inventors: Mohit K. HARAN, Mohammad HASAN, Tahir GHANI, Anand S. MURTHY
-
Publication number: 20230087399Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) a capping layer comprising silicon over the second pEPI region. A conductive contact material comprising titanium is on the capping layer.Type: ApplicationFiled: September 23, 2021Publication date: March 23, 2023Inventors: Debaleena NANDI, Cory BOMBERGER, Rushabh SHAH, Gilbert DEWEY, Nazila HARATIPOUR, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI