Patents by Inventor Tahir Ghani
Tahir Ghani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250120152Abstract: Gate-all-around integrated circuit structures having oxide sub-fins, and methods of fabricating gate-all-around integrated circuit structures having oxide sub-fins, are described. For example, an integrated circuit structure includes an oxide sub-fin structure having a top and sidewalls. An oxidation catalyst layer is on the top and sidewalls of the oxide sub-fin structure. A vertical arrangement of nanowires is above the oxide sub-fin structure. A gate stack is surrounding the vertical arrangement of nanowires and on at least the portion of the oxidation catalyst layer on the top of the oxide sub-fin structure.Type: ApplicationFiled: December 18, 2024Publication date: April 10, 2025Inventors: Leonard P. GULER, Biswajeet GUHA, Tahir GHANI, Swaminathan SIVAKUMAR
-
Patent number: 12272737Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.Type: GrantFiled: September 14, 2023Date of Patent: April 8, 2025Assignee: Intel CorporationInventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani
-
Publication number: 20250113550Abstract: Gate-all-around integrated circuit structures having nanowires with tight vertical spacing, and methods of fabricating gate-all-around integrated circuit structures having nanowires with tight vertical spacing, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal silicon nanowires. A vertical spacing between vertically adjacent silicon nanowires is less than 6 nanometers. A gate stack is around the vertical arrangement of horizontal silicon nanowires. A first source or drain structure is at a first end of the vertical arrangement of horizontal silicon nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal silicon nanowires.Type: ApplicationFiled: December 13, 2024Publication date: April 3, 2025Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Tahir GHANI, Susmita GHOSE, Zachary GEIGER
-
Publication number: 20250113607Abstract: Methods are disclosed for forming fins in transistors. In one embodiment, a method of fabricating a device includes forming silicon fins on a substrate and forming a dielectric layer on the substrate and adjacent to the silicon fins such that an upper region of each silicon fin is exposed. Germanium may then be epitaxially grown germanium on the upper regions of the silicon fins to form germanium fins.Type: ApplicationFiled: December 12, 2024Publication date: April 3, 2025Inventors: Martin D. GILES, Tahir GHANI
-
Patent number: 12266571Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: GrantFiled: September 29, 2023Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
-
Patent number: 12266708Abstract: Integrated circuit structures having a dielectric anchor void, and methods of fabricating integrated circuit structures having a dielectric anchor void, are described. For example, an integrated circuit structure includes a sub-fin in a shallow trench isolation (STI) structure. A plurality of horizontally stacked nanowires is over the sub-fin. A gate dielectric material layer is surrounding the horizontally stacked nanowires. A gate electrode structure is over the gate dielectric material layer. A dielectric anchor is laterally spaced apart from the plurality of horizontally stacked nanowires and recessed into a first portion of the STI structure. A second portion of the STI structure on a side of the plurality of horizontally stacked nanowires opposite the dielectric anchor has a trench therein. A dielectric gate plug is on the dielectric anchor.Type: GrantFiled: December 29, 2023Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Leonard P. Guler, Charles H. Wallace, Tahir Ghani
-
Publication number: 20250107181Abstract: Gate-all-around integrated circuit structures having a removed substrate, and methods of fabricating gate-all-around integrated circuit structures having a removed substrate, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack surrounds a channel region of the vertical arrangement of horizontal nanowires. A pair of non-discrete epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal nanowires. A pair of dielectric spacers is between the pair of non-discrete epitaxial source or drain structures and the gate stack. The pair of dielectric spacers and the gate stack have co-planar top surfaces. The pair of dielectric spacers, the gate stack and the pair of non-discrete epitaxial source or drain structures have co-planar bottom surfaces.Type: ApplicationFiled: December 6, 2024Publication date: March 27, 2025Inventors: Biswajeet GUHA, Mauro KOBRINSKY, Patrick MORROW, Oleg GOLONZKA, Tahir GHANI
-
Publication number: 20250104760Abstract: An IC device may include memory layers over a logic layer. A memory layer includes memory arrays, each of which includes memory cells arranged in rows and columns. A row of memory cells may be associated with a word line. A column of memory cells may be associated with a bit line. Bit lines of different memory arrays may be coupled using one or more vias or source/drain electrodes of transistors in the memory arrays. Alternatively, word lines of different memory arrays may be coupled using one or more vias or gate electrodes of transistors in the memory arrays. The logic layer has a logic circuit that can control data read operations and data write operations of the memory layers. The logic layer may include a power interconnect, which facilitates power delivery to the memory layers, and a signal interconnect, which facilitates signal transmission within the memory device.Type: ApplicationFiled: September 21, 2023Publication date: March 27, 2025Applicant: Intel CorporationInventors: Abhishek A. Sharma, Sagar Suthram, Wilfred Gomes, Anand S. Murthy, Tahir Ghani, Pushkar Sharad Ranade
-
Publication number: 20250107107Abstract: An IC device may include memory layers over a logic layer. A memory layer may include memory arrays and one or more peripheral circuits coupled to the memory arrays. A memory array may include memory cells arranged in rows and columns. A row of memory cells may be associated with a word line. A column of memory cells may be associated with a bit line. The logic layer includes one or more logic circuits that can control data read operations and data write operations of the memory layers. The logic layer may also include a power interconnect, which facilitates power delivery to the memory layers, and a signal interconnect, which facilitates signal transmission within the IC device. The IC device may further include vias that couple the memory layers to the logic layer. Each via may be connected to one or more memory layers and the logic layer.Type: ApplicationFiled: September 21, 2023Publication date: March 27, 2025Applicant: Intel CorporationInventors: Abhishek A. Sharma, Sagar Suthram, Wilfred Gomes, Pushkar Sharad Ranade, Anand S. Murthy, Tahir Ghani
-
Publication number: 20250107108Abstract: An IC device may include memory layers bonded to a logic layer with inclination. An angle between a memory layer and the logic layer may be in a range from approximately 0 to approximately 90 degrees. The memory layers may be over the logic layer. The IC device may include one or more additional logic layers that are parallel to a memory layer or perpendicular to a memory layer. The one or more additional logic layers may be over the logic layer. A memory layer may include memory cells. The logic layer may include logic circuits (e.g., sense amplifier, word line driver, etc.) that control the memory cells. Bit lines (or word lines) in different memory layers may be coupled to each other. A bit line and a word line in a memory layer may be controlled by logic circuits in different logic layers.Type: ApplicationFiled: September 25, 2023Publication date: March 27, 2025Applicant: Intel CorporationInventors: Abhishek A. Sharma, Sagar Suthram, Wilfred Gomes, Tahir Ghani, Anand S. Murthy, Pushkar Sharad Ranade
-
Publication number: 20250095693Abstract: An IC device may include a CMOS layer and memory layers at the frontside and backside of the CMOS layer. The CMOS layer may include one or more logic circuits, which may include MOSFET transistors. A memory layer may include one or more memory arrays. A memory array may include memory cells (e.g., DRAM cells), bit lines, and word lines. The logic circuits may include word line drivers and sense amplifiers. Word lines in different memory layers may share the same word line driver. Bit lines in different memory layers may share the same sense amplifier. The IC device may include front-back word line drivers, near-far sense amplifiers, near-far word line drivers, or front-back sense amplifiers. A memory layer may be bonded with the CMOS layer through a bonding layer that provides a bonding interface between the memory layer and the CMOS layer.Type: ApplicationFiled: September 15, 2023Publication date: March 20, 2025Applicant: Intel CorporationInventors: Abhishek A. Sharma, Juan G. Alzate-Vinasco, Fatih Hamzaoglu, Wilfred Gomes, Anand S. Murthy, Tahir Ghani, Van H. Le
-
Publication number: 20250098179Abstract: An IC device may include a CMOS layer and memory layers at the frontside and backside of the CMOS layer. The CMOS layer may include one or more logic circuits with MOSFET transistors. The CMOS layer may also include memory cells, e.g., SRAM cells. A memory layer may include one or more memory arrays. A memory array may include memory cells (e.g., DRAM cells), bit lines, and word lines. A logic circuit in the CMOS layer may control access to the memory cells. A memory layer may be bonded with the CMOS layer through a bonding layer that includes conductive structures coupled to a logic circuit in the CMOS layer or to bit lines or word lines in the memory layer. An additional conductive structure may be at the backside of a MOSFET transistor in the CMOS layer and coupled to a conductive structure in the bonding layer.Type: ApplicationFiled: September 15, 2023Publication date: March 20, 2025Inventors: Abhishek A. Sharma, Van H. Le, Fatih Hamzaoglu, Juan G. Alzate-Vinasco, Nikhil Jasvant Mehta, Vinaykumar Hadagali, Yu-Wen Huang, Honore Djieutedjeu, Tahir Ghani, Timothy Jen, Shailesh Kumar Madisetti, Jisoo Kim, Wilfred Gomes, Kamal Baloch, Vamsi Evani, Christopher Wiegand, James Pellegren, Sagar Suthram, Christopher M. Pelto, Gwang Soo Kim, Babita Dhayal, Prashant Majhi, Anand Iyer, Anand S. Murthy, Pushkar Sharad Ranade, Pooya Tadayon, Nitin A. Deshpande
-
Patent number: 12255234Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having germanium-based channels are described. In an example, an integrated circuit structure includes a fin having a lower silicon portion, an intermediate germanium portion on the lower silicon portion, and a silicon germanium portion on the intermediate germanium portion. An isolation structure is along sidewalls of the lower silicon portion of the fin. A gate stack is over a top of and along sidewalls of an upper portion of the fin and on a top surface of the isolation structure. A first source or drain structure is at a first side of the gate stack. A second source or drain structure is at a second side of the gate stack.Type: GrantFiled: January 10, 2024Date of Patent: March 18, 2025Assignee: Intel CorporationInventors: Siddharth Chouksey, Glenn Glass, Anand Murthy, Harold Kennel, Jack T. Kavalieros, Tahir Ghani, Ashish Agrawal, Seung Hoon Sung
-
Patent number: 12243875Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.Type: GrantFiled: January 10, 2024Date of Patent: March 4, 2025Assignee: Intel CorporationInventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
-
Patent number: 12237420Abstract: Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.Type: GrantFiled: April 23, 2024Date of Patent: February 25, 2025Assignee: Intel CorporationInventors: Cory Bomberger, Anand S. Murthy, Tahir Ghani, Anupama Bowonder
-
Patent number: 12238913Abstract: Described herein are two transistor (2T) memory cells that use TFTs as access and gain transistors. When one or both transistors of a 2T memory cell are implemented as TFTs, these transistors may be provided in different layers above a substrate, enabling a stacked architecture. An example 2T memory cell includes an access TFT provided in a first layer over a substrate, and a gain TFT provided in a second layer over the substrate, the first layer being between the substrate and the second layer (i.e., the gain TFT is stacked in a layer above the access TFT). Stacked TFT based 2T memory cells allow increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density.Type: GrantFiled: January 31, 2023Date of Patent: February 25, 2025Assignee: Intel CorporationInventors: Abhishek A. Sharma, Juan G. Alzate-Vinasco, Fatih Hamzaoglu, Bernhard Sell, Pei-hua Wang, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Umut Arslan, Travis W. Lajoie, Chieh-jen Ku
-
Patent number: 12230717Abstract: Integrated circuit structures having partitioned source or drain contact structures, and methods of fabricating integrated circuit structures having partitioned source or drain contact structures, are described. For example, an integrated circuit structure includes a fin. A gate stack is over the fin. A first epitaxial source or drain structure is at a first end of the fin. A second epitaxial source or drain structure is at a second end of the fin. A conductive contact structure is coupled to one of the first or the second epitaxial source or drain structures. The conductive contact structure has a first portion partitioned from a second portion.Type: GrantFiled: February 23, 2023Date of Patent: February 18, 2025Assignee: Intel CorporationInventors: Mauro J. Kobrinsky, Stephanie Bojarski, Babita Dhayal, Biswajeet Guha, Tahir Ghani
-
Patent number: 12230721Abstract: Gate-all-around integrated circuit structures having asymmetric source and drain contact structures, and methods of fabricating gate-all-around integrated circuit structures having asymmetric source and drain contact structures, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a fin. A gate stack is over the vertical arrangement of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. A first conductive contact structure is coupled to the first epitaxial source or drain structure. A second conductive contact structure is coupled to the second epitaxial source or drain structure. The second conductive contact structure is deeper along the fin than the first conductive contact structure.Type: GrantFiled: September 18, 2023Date of Patent: February 18, 2025Assignee: Intel CorporationInventors: Biswajeet Guha, Mauro J. Kobrinsky, Tahir Ghani
-
Patent number: 12224350Abstract: Self-aligned gate endcap (SAGE) architectures with gate-all-around devices, and methods of fabricating self-aligned gate endcap (SAGE) architectures with gate-all-around devices, are described. In an example, an integrated circuit structure includes a semiconductor fin above a substrate and having a length in a first direction. A nanowire is over the semiconductor fin. A gate structure is over the nanowire and the semiconductor fin, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate endcap isolation structures is included, where a first of the pair of gate endcap isolation structures is spaced equally from a first side of the semiconductor fin as a second of the pair of gate endcap isolation structures is spaced from a second side of the semiconductor fin.Type: GrantFiled: September 29, 2023Date of Patent: February 11, 2025Assignee: Intel CorporationInventors: Biswajeet Guha, William Hsu, Leonard P. Guler, Dax M. Crum, Tahir Ghani
-
Publication number: 20250048698Abstract: Gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, and methods of fabricating gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures includes vertically discrete portions aligned with the first vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures includes vertically discrete portions aligned with the second vertical arrangement of horizontal nanowires. A conductive contact structure is laterally between and in contact with the one of the first pair of epitaxial source or drain structures and the one of the second pair of epitaxial source or drain structures.Type: ApplicationFiled: October 22, 2024Publication date: February 6, 2025Inventors: Cory BOMBERGER, Anand MURTHY, Mark T. BOHR, Tahir GHANI, Biswajeet GUHA