Patents by Inventor Tai-I Yang

Tai-I Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200294919
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first metal wire arranged within an inter-level dielectric (ILD) layer over a substrate. A second metal wire is arranged within the ILD layer and is laterally separated from the first metal wire by an air-gap. A dielectric layer is arranged over the first metal wire and the second metal wire. The dielectric layer has a curved surface along a top of the air-gap. The curved surface of the dielectric layer is a smooth curved surface that continuously extends between opposing sides of the air-gap. A via is disposed on and over the second metal wire.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Tai-I Yang, Cheng-Chi Chuang, Yung-Chih Wang, Tien-Lu Lin
  • Patent number: 10763337
    Abstract: A method of forming a gate-all-around device includes forming a gate electrode layer over a substrate, patterning the gate electrode layer to form a conical frustum-shaped gate electrode, etching the conical frustum-shaped gate electrode to form a through hole extending through top and bottom surfaces of the conical frustum-shaped gate electrode, and after etching the conical frustum-shaped gate electrode, forming a nanowire in the through hole in the conical frustum-shaped gate electrode.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: September 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yung-Chih Wang, Yu-Chieh Liao, Tai-I Yang, Hsin-Ping Chen
  • Patent number: 10714421
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a conductive line over the semiconductor substrate. The semiconductor device structure also includes a conductive via on the conductive line. The conductive via has an upper portion and a protruding portion. The protruding portion extends from a bottom of the upper portion towards the conductive line. The bottom of the upper portion is wider than a top of the upper portion. The semiconductor device structure further includes a dielectric layer over the semiconductor substrate, and the dielectric layer surrounds the conductive line and the conductive via.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Yung-Hsu Wu, Chung-Ju Lee
  • Patent number: 10700005
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first metal wire arranged within an inter-level dielectric (ILD) layer over a substrate and laterally separated in a first direction from a first closest air-gap by a first distance. A second metal wire is arranged within the ILD layer and is laterally separated in the first direction from a second closest air-gap by a second distance that is larger than the first distance. A via is disposed on an upper surface of the second metal wire.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Cheng-Chi Chuang, Yung-Chih Wang, Tien-Lu Lin
  • Patent number: 10676351
    Abstract: A NEMS device structure and a method for forming the same are provided. The NEMS device structure includes a substrate and an interconnect structure formed over the substrate. The NEMS device structure includes a dielectric layer formed over the interconnect structure and a beam structure formed in and over the dielectric layer, wherein the beam structure includes a plurality of strip structures. The NEMS device structure includes a cap structure formed over the dielectric layer and the beam structure and a cavity formed between the beam structure and the cap structure.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Ping Chen, Carlos H. Diaz, Ken-Ichi Goto, Shau-Lin Shue, Tai-I Yang
  • Patent number: 10680078
    Abstract: A semiconductor arrangement and method of formation are provided. The semiconductor arrangement comprises a conductive contact in contact with a substantially planar first top surface of a first active area, the contact between and in contact with a first alignment spacer and a second alignment spacer both having substantially vertical outer surfaces. The contact formed between the first alignment spacer and the second alignment spacer has a more desired contact shape then a contact formed between alignment spacers that do not have substantially vertical outer surfaces. The substantially planar surface of the first active area is indicative of a substantially undamaged structure of the first active area as compared to an active area that is not substantially planar. The substantially undamaged first active area has a greater contact area for the contact and a lower contact resistance as compared to a damaged first active area.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tai-I Yang, Tien-Lu Lin, Wai-Yi Lien, Chih-Hao Wang, Jiun-Peng Wu
  • Publication number: 20200168458
    Abstract: A method for patterning a metal layer includes depositing a hard mask layer on a metal layer, depositing a first patterned layer on the hard mask layer, forming a first set of sidewall spacers on sidewalls of features of the first patterned layer, forming a second set of sidewall spacers on sidewalls of the first set of sidewall spacers, removing the first set of sidewall spacers, and performing a reactive ion etching process to pattern portions of the metal layer exposed through the first patterned layer and the second set of sidewall spacers.
    Type: Application
    Filed: August 19, 2019
    Publication date: May 28, 2020
    Inventors: Yu-Chieh Liao, Cheng-Chi Chuang, Chia-Tien Wu, Tai-I Yang, Hsin-Ping Chen
  • Publication number: 20200124985
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 10622453
    Abstract: A vertical MOS transistor includes a substrate, a metal line over the substrate, a semiconductor pillar, a gate dielectric layer surrounding the semiconductor pillar, and a metal gate surrounding the gate dielectric layer. The metal line is under a bottom surface of the semiconductor pillar. The semiconductor pillar is grown by using the bottom-up growing in low temperature to reduce turn off leakage current (Ioff), short channel effect, thermo-budget, and provide high electron mobility.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-I Yang, Yung-Chih Wang, Shin-Yi Yang, Chih-Wei Lu, Hsin-Ping Chen, Shau-Lin Shue
  • Publication number: 20200105598
    Abstract: The present disclosure provides a method of forming an integrated circuit structure. The method includes depositing a first metal layer on a semiconductor substrate; forming a hard mask on the first metal layer; patterning the first metal layer to form first metal features using the hard mask as an etch mask; depositing a dielectric layer of a first dielectric material on the first metal features and in gaps among the first metal features; performing a chemical mechanical polishing (CMP) process to both the dielectric layer and the hard mask; removing the hard mask, thereby having portions of the dielectric layer extruded above the metal features; forming an inter-layer dielectric (ILD) layer of the second dielectric material different from the first dielectric material; and patterning the ILD layer to form openings that expose the first metal features and are constrained to be self-aligned with the first metal features by the extruded portions of the first dielectric layer.
    Type: Application
    Filed: September 4, 2019
    Publication date: April 2, 2020
    Inventors: Tai-I Yang, Yu-Chieh Liao, Chia-Tien Wu, Hsin-Ping Chen, Hai-Ching Chen, Shau-Lin Shue
  • Publication number: 20200083093
    Abstract: The present disclosure provides a method for forming an interconnect structure, including forming an Nth metal line principally extending in a first direction, forming a sacrificial bilayer over the Nth metal line, forming a dielectric layer over the sacrificial bilayer, removing a portion of the sacrificial bilayer, forming a conductive post in the sacrificial bilayer, wherein the conductive post having a top pattern coplanar with a top surface of the sacrificial bilayer and a bottom pattern in contact with a top surface of the Nth metal line, and forming an Nth metal via over the sacrificial bilayer.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: HSIANG-WEI LIU, WEI-CHEN CHU, CHIA-TIEN WU, TAI-I YANG
  • Publication number: 20200051853
    Abstract: The present disclosure describes methods which employ a patterning photolithography/etch operations to form self-aligned interconnects with multi-metal gap fill. For example, the method includes a first pattern structure and a second pattern structure formed over a dielectric layer. Each of the first and second pattern structures includes a pair of spacers, and a center portion between the pair of spacers. A first opening, self-aligned to a space between the first and second pattern structures, is formed in the dielectric layer. A first conductive material is deposited in the first opening. The center portion of the second pattern structure is removed to form a void above the dielectric layer and between the pair of spacers of the second pattern structure. A second opening, self-aligned to the void, is formed in the dielectric layer; and a second conductive material is deposited in the second opening.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chen Chu, Tai-I Yang, Cheng-Chi Chuang, Chia-Tien Wu
  • Publication number: 20200051914
    Abstract: A method comprises forming a first conductive line and a second conductive line in a first dielectric layer over a substrate, each having a planar top surface, applying an etch-back process to the first dielectric layer until a dielectric portion between the first conductive line and the second conductive line has been removed, and the first conductive line and the second conductive line have respective cross sectional shapes including a rounded surface and two rounded corners and depositing a second dielectric layer over the substrate, while leaving a first air gap between the first conductive line and the second conductive line.
    Type: Application
    Filed: October 2, 2019
    Publication date: February 13, 2020
    Inventors: Hsiang-Lun Kao, Hsiang-Wei Liu, Tai-I Yang, Jian-Hua Chen, Yu-Chieh Liao, Yung-Chih Wang, Tien-Lu Lin
  • Patent number: 10535560
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a first conductive feature in a first dielectric layer and a second conductive feature over the first dielectric layer. The semiconductor device structure also includes a conductive via between the first conductive feature and the second conductive feature. The conductive via includes an etching stop layer over the first conductive feature, a conductive pillar over the etching stop layer, and a capping layer surrounding the conductive pillar and the etching stop layer. The first conductive feature and the second conductive feature are electrically connected to each other through the capping layer, the conductive pillar, and the etching stop layer. The semiconductor device structure further includes a second dielectric layer over the first dielectric layer and below the second conductive feature. The second dielectric layer surrounds the conductive via.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chen Chu, Hsiang-Wei Liu, Tai-I Yang, Chia-Tien Wu
  • Patent number: 10534273
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Publication number: 20200006228
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.
    Type: Application
    Filed: April 10, 2019
    Publication date: January 2, 2020
    Inventors: Tai-I Yang, Li-Lin Su, Yung-Hsu Wu, Hsin-Ping Chen, Cheng-Chi Chuang
  • Patent number: 10490500
    Abstract: A method comprises forming a first conductive line and a second conductive line in a first dielectric layer over a substrate, each having a planar top surface, applying an etch-back process to the first dielectric layer until a dielectric portion between the first conductive line and the second conductive line has been removed, and the first conductive line and the second conductive line have respective cross sectional shapes including a rounded surface and two rounded corners and depositing a second dielectric layer over the substrate, while leaving a first air gap between the first conductive line and the second conductive line.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: November 26, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Lun Kao, Hsiang-Wei Liu, Tai-I Yang, Jian-Hua Chen, Yu-Chieh Liao, Yung-Chih Wang, Tien-Lu Lin
  • Patent number: 10483159
    Abstract: The present disclosure describes methods which employ a patterning photolithography/etch operations to form self-aligned interconnects with multi-metal gap fill. For example, the method includes a first pattern structure and a second pattern structure formed over a dielectric layer. Each of the first and second pattern structures includes a pair of spacers, and a center portion between the pair of spacers. A first opening, self-aligned to a space between the first and second pattern structures, is formed in the dielectric layer. A first conductive material is deposited in the first opening. The center portion of the second pattern structure is removed to form a void above the dielectric layer and between the pair of spacers of the second pattern structure. A second opening, self-aligned to the void, is formed in the dielectric layer; and a second conductive material is deposited in the second opening.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 19, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chen Chu, Tai-I Yang, Cheng-Chi Chuang, Chia-Tien Wu
  • Publication number: 20190326157
    Abstract: A semiconductor structure includes an integrated circuit, a first dielectric layer, an etching stop layer, a barrier layer, a conductive layer, and a second dielectric layer. The first dielectric layer is over the integrated circuit. The etching stop layer is over the first dielectric layer. The barrier layer has an upper portion extending along a top surface of the etching stop layer and a lower portion extending downwardly from the upper portion along a sidewall of the etching stop layer and a sidewall of the first dielectric layer. The conductive layer is over the barrier layer and having a void region extending through the conductive layer, the barrier layer and the etching stop layer. The second dielectric layer is over the conductive layer and the void region.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Tai-I YANG, Wei-Chen CHU, Hsin-Ping CHEN, Chih-Wei LU, Chung-Ju LEE
  • Publication number: 20190305100
    Abstract: A method of forming a gate-all-around device includes forming a gate electrode layer over a substrate, patterning the gate electrode layer to form a conical frustum-shaped gate electrode, etching the conical frustum-shaped gate electrode to form a through hole extending through top and bottom surfaces of the conical frustum-shaped gate electrode, and after etching the conical frustum-shaped gate electrode, forming a nanowire in the through hole in the conical frustum-shaped gate electrode.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yung-Chih WANG, Yu-Chieh LIAO, Tai-I YANG, Hsin-Ping CHEN