Patents by Inventor Tai-Su Park

Tai-Su Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9312124
    Abstract: A method of fabricating a semiconductor device may include: forming a field region defining an active region in a substrate; forming a gate trench in which the active and field regions are partially exposed; forming a gate insulating layer on a surface of the active region; conformally forming a gate barrier layer including metal on the gate insulating layer and partially exposed field region; forming a gate electrode layer including metal on the gate barrier layer; and/or forming a gate capping layer. Forming the gate insulating layer may include forming a first gate oxide layer by primarily oxidizing the active region's surface, and forming a second gate oxide layer between the active region's surface and the first gate oxide layer by secondarily oxidizing the active region's surface. The gate capping layer may be in contact with the gate insulating layer, gate barrier layer, and/or gate electrode layer.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: April 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su Park, Gun-Joong Lee, Young-Dong Lee, Sang-Chul Han, Joo-Byoung Yoon
  • Patent number: 9190495
    Abstract: A recessed channel array transistor may include a substrate, a gate oxide layer, a gate electrode and source/drain regions. The substrate may have an active region and an isolation region. A recess may be formed in the active region. The gate oxide layer may be formed on the recess and the substrate. The gate oxide layer may include a first portion on an intersection between a side end of the recess and a sidewall of the active region and a second portion on a side surface of the recess. The first portion may include a thickness greater than about 70% of a thickness of the second portion. The gate electrode may be formed on the gate oxide layer. The source/drain regions may be formed in the substrate. Thus, the recessed channel array transistor may have a decreased leakage current and an increased on-current.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: November 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Patent number: 9184086
    Abstract: Methods of fabricating a semiconductor device include forming a field trench in a silicon substrate, forming a first oxide layer in the field trench, forming a first thinned oxide layer by partially removing a surface of the first oxide layer, and forming a first nitride layer on the first thinned oxide layer.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: November 10, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su Park, Mi-Young Seo, Sung-Wook Park
  • Patent number: 9054037
    Abstract: A method of fabricating a semiconductor device includes forming a trench in a substrate, forming a pre-gate insulating film along side surfaces and a bottom surface of the trench, and oxidizing the pre-gate insulating film through a densification process.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: June 9, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-Chan Kim, Tai-Su Park, Ju-Eun Kim, Ki-Hong Nam
  • Patent number: 8835275
    Abstract: Semiconductor devices, and methods of fabricating the same, include forming device isolation regions in a substrate to define active regions, forming gate trenches in the substrate to expose the active regions and device isolation regions, conformally forming a preliminary gate insulating layer including silicon oxide on the active regions exposed in the grate trenches, nitriding the preliminary gate insulating layer using a radio-frequency bias having a frequency of about 13.56 MHz and power between about 100 W and about 300 W to form a nitrided preliminary gate insulating layer including silicon oxynitride, forming a gate electrode material layer on the nitride preliminary gate insulating layer, partially removing the nitrided preliminary gate insulating layer and the gate electrode material layer to respectively form a gate insulating layer and a gate electrode layer, and forming a gate capping layer on the gate electrode layer to fill the gate trenches.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tai-Su Park, Jin-Hyuk Choi, Sang-Chul Han, Jung-Sup Oh, Young-Dong Lee
  • Publication number: 20140227856
    Abstract: Methods of fabricating a semiconductor device include forming a field trench in a silicon substrate, forming a first oxide layer in the field trench, forming a first thinned oxide layer by partially removing a surface of the first oxide layer, and forming a first nitride layer on the first thinned oxide layer.
    Type: Application
    Filed: December 23, 2013
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su PARK, Mi-Young SEO, Sung-Wook PARK
  • Publication number: 20140134812
    Abstract: A method of fabricating a semiconductor device includes forming a trench in a substrate, forming a pre-gate insulating film along side surfaces and a bottom surface of the trench, and oxidizing the pre-gate insulating film through a densification process.
    Type: Application
    Filed: October 23, 2013
    Publication date: May 15, 2014
    Inventors: Dong-Chan KIM, Tai-Su PARK, Ju-Eun KIM, Ki-Hong NAM
  • Patent number: 8691649
    Abstract: In methods of manufacturing a recessed channel array transistor, a recess may be formed in an active region of a substrate. A plasma oxidation process may be performed on the substrate to form a preliminary gate oxide layer on an inner surface of the recess and an upper surface of the substrate. Moistures may be absorbed in a surface of the preliminary gate oxide layer to form a gate oxide layer. A gate electrode may be formed on the gate oxide layer to fill up the recess. Source/drain regions may be formed in an upper surface of the substrate at both sides of the gate electrode. Thus, the oxide layer may have a uniform thickness distribution and a dense structure.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tai-Su Park, Jung-Sup Oh, Gun-Joong Lee, Jung-Soo An, Dong-Kyu Lee, Jung-Geun Park, Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Patent number: 8501611
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Do Ryu, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Dong-Chan Kim, Jong-Ryeol Yoo, Seong-Hoon Jeong, Jong-Hoon Kang
  • Publication number: 20130171801
    Abstract: Semiconductor devices, and methods of fabricating the same, include forming device isolation regions in a substrate to define active regions, forming gate trenches in the substrate to expose the active regions and device isolation regions, conformally forming a preliminary gate insulating layer including silicon oxide on the active regions exposed in the grate trenches, nitriding the preliminary gate insulating layer using a radio-frequency bias having a frequency of about 13.56 MHz and power between about 100 W and about 300 W to form a nitrided preliminary gate insulating layer including silicon oxynitride, forming a gate electrode material layer on the nitride preliminary gate insulating layer, partially removing the nitrided preliminary gate insulating layer and the gate electrode material layer to respectively form a gate insulating layer and a gate electrode layer, and forming a gate capping layer on the gate electrode layer to fill the gate trenches.
    Type: Application
    Filed: September 5, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su PARK, Jin-Hyuk CHOI, Sang-Chul HAN, Jung-Sup OH, Young-Dong LEE
  • Publication number: 20130164919
    Abstract: A method of fabricating a semiconductor device may include forming active and field regions in a substrate; forming a gate trench in which the active and field regions are exposed; forming a gate insulating layer on a surface of the exposed active region, wherein forming the gate insulating layer includes forming a first gate oxide layer by primarily oxidizing the surface of the active region, and forming a second gate oxide layer between the surface of the active region and the first gate oxide layer by secondarily oxidizing the surface of the active region; conformally forming a gate barrier layer on the gate insulating layer and the exposed field region; forming a gate electrode layer on the gate barrier layer; and forming a gate capping layer in contact with the gate insulating layer, the gate barrier layer, and the gate electrode layer in the gate trench.
    Type: Application
    Filed: September 6, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su PARK, Gun-Joong LEE, Young-Dong LEE, Sang-Chul HAN, Joo-Byoung YOON
  • Publication number: 20120282769
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Inventors: Jeong-Do Ryu, Si-Young CHOI, Yu-Gyun SHIN, Tai-Su PARK, Dong-Chan KIM, Jong-Ryeol YOO, Seong-Hoon JEONG, Jong-Hoon KANG
  • Patent number: 8252681
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Do Ryu, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Dong-Chan Kim, Jong-Ryeol Yoo, Seong-Hoon Jeong, Jong-Hoon Kang
  • Publication number: 20110237037
    Abstract: In methods of manufacturing a recessed channel array transistor, a recess may be formed in an active region of a substrate. A plasma oxidation process may be performed on the substrate to form a preliminary gate oxide layer on an inner surface of the recess and an upper surface of the substrate. Moistures may be absorbed in a surface of the preliminary gate oxide layer to form a gate oxide layer. A gate electrode may be formed on the gate oxide layer to fill up the recess. Source/drain regions may be formed in an upper surface of the substrate at both sides of the gate electrode. Thus, the oxide layer may have a uniform thickness distribution and a dense structure.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 29, 2011
    Inventors: Tai-Su Park, Jung-Sup Oh, Gun-Joong Lee, Jung-Soo An, Dong-Kyu Lee, Jung-Geun Park, Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Patent number: 7968442
    Abstract: A fin field effect transistor includes a fin protruding from a semiconductor substrate, a gate insulating layer formed so as to cover upper and lateral surfaces of the fin, and a gate electrode formed across the fin so as to cover the gate insulating layer. An upper edge of the fin is rounded so that an electric field concentratedly applied to the upper edge of the fin through the gate electrode is dispersed. A thickness of a portion of the gate insulating layer formed on an upper surface of the fin is greater than a thickness of a portion of the gate insulating layer formed on a lateral surface of the fin, in order to reduce an electric field applied through the gate electrode.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-hoon Kang, Tai-su Park, Dong-chan Kim, Yu-gyun Shin, Jeong-do Ryu, Seong-hoon Jeong
  • Patent number: 7807543
    Abstract: A semiconductor device is manufactured by forming trenches in a substrate and selectively performing Plasma Ion Immersion Implantation and Deposition (PIIID) on a subset of the trenches in the substrate. The PIIID may be performed on only a portion of a surface of at least one of the trenches in the substrate. Semiconductor devices can include a semiconductor substrate having first, second and third trenches therein, and an oxide liner layer that fully lines the first trenches, that does not line the second trenches and that partially lines the third trenches.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-woon Shin, Tai-su Park, Si-young Choi, Soo-jin Hong, Mi-jin Kim
  • Patent number: 7785985
    Abstract: Methods of manufacturing a semiconductor device, which can reduce hot electron induced punchthrough (HEIP) and/or improve the operating characteristics of the device include selectively forming an oxynitride layer in a device isolation layer according to the characteristics of transistors isolated by the device isolation layer. The methods include forming first trenches and second trenches on a substrate, forming an oxide layer on the surfaces of the first trenches and the second trenches, selectively forming an oxynitride layer on the second trenches by using plasma ion immersion implantation (PIII), and forming a buried insulating layer in the first trenches and the second trenches. The buried insulating layer may be planarized to form a first device isolation layer in the first trenches and a second device isolation layer in the second trenches.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: August 31, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-woon Shin, Tai-su Park, Si-young Choi, Soo-jin Hong, Mi-jin Kim
  • Publication number: 20100109057
    Abstract: A fin field effect transistor includes a fin protruding from a semiconductor substrate, a gate insulating layer formed so as to cover upper and lateral surfaces of the fin, and a gate electrode formed across the fin so as to cover the gate insulating layer. An upper edge of the fin is rounded so that an electric field concentratedly applied to the upper edge of the fin through the gate electrode is dispersed. A thickness of a portion of the gate insulating layer formed on an upper surface of the fin is greater than a thickness of a portion of the gate insulating layer formed on a lateral surface of the fin, in order to reduce an electric field applied through the gate electrode.
    Type: Application
    Filed: July 6, 2009
    Publication date: May 6, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jong-hoon Kang, Tai-su Park, Dong-chan Kim, Yu-gyun Shin, Jeong-do Ryu, Seong-hoon Jeong
  • Publication number: 20100072545
    Abstract: A recessed channel array transistor may include a substrate, a gate oxide layer, a gate electrode and source/drain regions. The substrate may have an active region and an isolation region. A recess may be formed in the active region. The gate oxide layer may be formed on the recess and the substrate. The gate oxide layer may include a first portion on an intersection between a side end of the recess and a sidewall of the active region and a second portion on a side surface of the recess. The first portion may include a thickness greater than about 70% of a thickness of the second portion. The gate electrode may be formed on the gate oxide layer. The source/drain regions may be formed in the substrate. Thus, the recessed channel array transistor may have a decreased leakage current and an increased on-current.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 25, 2010
    Inventors: Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Publication number: 20100035425
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Inventors: Jeong Do Ryu, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Dong-Chan Kim, Jong-Ryeol Yoo, Seong-Hoon Jeong, Jong-Hoon Kang