Patents by Inventor Taiji Ema

Taiji Ema has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110108925
    Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.
    Type: Application
    Filed: January 20, 2011
    Publication date: May 12, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Tomohiko TSUTSUMI, Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Patent number: 7939893
    Abstract: A semiconductor device manufacturing method includes, forming isolation region having an aspect ratio of 1 or more in a semiconductor substrate, forming a gate insulating film, forming a silicon gate electrode and a silicon resistive element, forming side wall spacers on the gate electrode, heavily doping a first active region with phosphorus and a second active region and the resistive element with p-type impurities by ion implantation, forming salicide block at 500° C. or lower, depositing a metal layer covering the salicide block, and selectively forming metal silicide layers. The method may further includes, forming a thick and a thin gate insulating films, and performing implantation of ions of a first conductivity type not penetrating the thick gate insulating film and oblique implantation of ions of the opposite conductivity type penetrating also the thick gate insulating film before the formation of side wall spacers.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: May 10, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Patent number: 7936579
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: May 3, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Publication number: 20110073950
    Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.
    Type: Application
    Filed: December 10, 2010
    Publication date: March 31, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Publication number: 20110037116
    Abstract: The method of manufacturing a semiconductor device, including a first region where a transistor including a gate electrode of a stacked structure is formed, a second region where a transistor including a gate electrode of a single-layer structure is formed, and a third region positioned in a boundary part between the first region and the second region, includes: depositing a first conductive film, patterning the first conductive film in the first region and the third region so that the outer edge is positioned in the third region, depositing the second conductive film, patterning the second conductive film to form a control gate in the first region while leaving the second conductive film, covering the second region and having the inner edge positioned inner of the outer edge of the first conductive film, and patterning the second conductive film in the second region to form the gate electrode.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima, Taiji Ema
  • Patent number: 7888740
    Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: February 15, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Publication number: 20100320543
    Abstract: A semiconductor device manufacturing method includes, forming isolation region having an aspect ratio of 1 or more in a semiconductor substrate, forming a gate insulating film, forming a silicon gate electrode and a silicon resistive element, forming side wall spacers on the gate electrode, heavily doping a first active region with phosphorus and a second active region and the resistive element with p-type impurities by ion implantation, forming salicide block at 500° C. or lower, depositing a metal layer covering the salicide block, and selectively forming metal silicide layers. The method may further includes, forming a thick and a thin gate insulating films, and performing implantation of ions of a first conductivity type not penetrating the thick gate insulating film and oblique implantation of ions of the opposite conductivity type penetrating also the thick gate insulating film before the formation of side wall spacers.
    Type: Application
    Filed: August 11, 2010
    Publication date: December 23, 2010
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Taiji EMA, Hideyuki KOJIMA, Toru ANEZAKI
  • Publication number: 20100308420
    Abstract: A semiconductor device includes a memory transistor including a first side wall insulating film and a second side wall insulating film disposed on the outside; a high-voltage transistor including a third side wall insulating film having the same composition as that of the first side wall insulating film, and a fourth side wall insulating film having the same composition as that of the second side wall insulating film, the fourth side wall insulating film being disposed on the outside; and a low-voltage transistor including a fifth side wall insulating film having the same composition as that of the second and fourth side wall insulating films. The memory transistor, the high-voltage transistor, and the low-voltage transistor are disposed on the same substrate. A total side wall spacer width of the low-voltage transistor is smaller than that of the high-voltage transistor by a thickness corresponding to the third side wall insulating film.
    Type: Application
    Filed: July 31, 2007
    Publication date: December 9, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Akihiro Usujima, Junichi Ariyoshi, Taiji Ema
  • Publication number: 20100283092
    Abstract: The semiconductor device includes a first conductor formed over a semiconductor substrate; a first insulator formed over the first conductor; a second insulator formed over the first insulator, the second insulator having an etching characteristic different from an etching characteristic of the first insulator; a second conductor formed on the second insulator, the second conductor being in contact with the second insulator; a third insulator formed over the second conductor, the third insulator having an etching characteristic different from the etching characteristic of the second insulator; a first contact hole formed through the third insulator and the second conductor, the first contact hole reaching the second insulator; a third conductor formed in the first contact hole, wherein a side wall of the third conductor is electrically connected to a side wall of the second conductor; a second contact hole formed through the third insulator and the first insulator, the second contact hole reaching the first c
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Taiji Ema, Tohru Anezaki
  • Publication number: 20100285653
    Abstract: The method of manufacturing a semiconductor device includes a first conductor over a semiconductor substrate; forming a first insulator over the first conductor; forming a second insulator, having an etching characteristic different from an etching characteristic of the first insulator, over the first insulator; forming a second conductor on the second insulator, the second conductor being in contact with the second insulator; forming a third insulator, having an etching characteristic different from the etching characteristic of the second insulator, over the second conductor; forming a first contact hole though the third insulator and the second conductor, the first contact hole exposing the second insulator; forming a second contact hole through the third insulator and the first insulator, the second contact hole exposing the first conductor; forming a third conductor in the first contact hole, wherein a side wall of the third conductor is electrically connected to a side wall of the second conductor; form
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Taiji Ema, Tohru Anezaki
  • Patent number: 7820509
    Abstract: The method of manufacturing a semiconductor device, including a first region where a transistor including a gate electrode of a stacked structure is formed, a second region where a transistor including a gate electrode of a single-layer structure is formed, and a third region positioned in a boundary part between the first region and the second region, includes: depositing a first conductive film, patterning the first conductive film in the first region and the third region so that the outer edge is positioned in the third region, depositing the second conductive film, patterning the second conductive film to form a control gate in the first region while leaving the second conductive film, covering the second region and having the inner edge positioned inner of the outer edge of the first conductive film, and patterning the second conductive film in the second region to form the gate electrode.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: October 26, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima, Taiji Ema
  • Publication number: 20100238716
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 23, 2010
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Patent number: 7795147
    Abstract: The semiconductor storage device comprises memory cell transistors formed on a semiconductor substrate 10; first insulation films 42 covering the top surfaces and the side surfaces of gate electrodes 20 of the memory cell transistors; through-holes 40 opened on first diffused layers 24; a second insulation film 36 with through-holes 40 opened on first diffused layers 24 and through-holes 38 opened on second diffused layers 26 formed in; capacitors formed on the inside walls and the bottoms of the through-holes 40 and including capacitor storage electrodes 46, connected to the first diffused layers 24; capacitor dielectric films 48 covering the capacitor storage electrodes 46, and capacitor-opposed electrodes 54 covering at least a part of the capacitor dielectric films 48; and, contact conducting films 44 formed on the inside walls and bottoms of the through-holes 38, and connected to the second diffused layers.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: September 14, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Tohru Anezaki
  • Patent number: 7795100
    Abstract: A semiconductor device manufacturing method includes, forming isolation region having an aspect ratio of 1 or more in a semiconductor substrate, forming a gate insulating film, forming a silicon gate electrode and a silicon resistive element, forming side wall spacers on the gate electrode, heavily doping a first active region with phosphorus and a second active region and the resistive element with p-type impurities by ion implantation, forming salicide block at 500° C. or lower, depositing a metal layer covering the salicide block, and selectively forming metal silicide layers. The method may further includes, forming a thick and a thin gate insulating films, and performing implantation of ions of a first conductivity type not penetrating the thick gate insulating film and oblique implantation of ions of the opposite conductivity type penetrating also the thick gate insulating film before the formation of side wall spacers.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: September 14, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Hedeyuki Kojima, Toru Anezaki
  • Patent number: 7755928
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: July 13, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Patent number: 7741213
    Abstract: A semiconductor device with a multi-layer wiring structure includes a first conductive region: a second conductive region that has an upper surface located in a higher position than the first conductive region with respect to the substrate; an insulating that covers the first and second conductive regions; a wiring groove that is formed in the insulating film so as to expose the second conductive region; a contact hole that is formed in the insulating film so as to expose the first conductive region; and a wiring pattern that fills the wiring groove and the contact hole. In this semiconductor device, the upper surface of the wiring pattern is located on the same plane as the upper surface of the insulating film.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 22, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Taiji Ema
  • Patent number: 7723825
    Abstract: According to the present invention, provided is a semiconductor device including: a p-type silicon substrate; a shallow n-well formed in the silicon substrate; a shallow p-well formed beside the shallow n-well in the silicon substrate; and a deep n-well which is formed beside the shallow p-well in the silicon substrate, and which is deeper than the shallow p-well. In addition, a deep p-well, which is deeper than the shallow p-well, is formed between the shallow p-well and the deep n-well in the silicon substrate.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: May 25, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Taiji Ema, Masayoshi Asano, Toru Anezaki, Junichi Ariyoshi
  • Publication number: 20100105180
    Abstract: An integrated circuit device comprises a memory cell well formed with a flash memory device, first and second well of opposite conductivity types for formation of high voltage transistors, and third and fourth wells of opposite conductivity types for low voltage transistors, wherein at least one of the first and second wells and at least one of the third and fourth wells have an impurity distribution profile steeper than the memory cell well.
    Type: Application
    Filed: December 31, 2009
    Publication date: April 29, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Patent number: 7696555
    Abstract: A semiconductor device includes: a first insulating layer with a flat surface formed over a semiconductor substrate structure in which a plurality of semiconductor elements are formed; column-like conductive plugs formed to penetrate the first insulating layer in the thickness direction; elongated wall-like conductive plugs formed through the first insulating layer in the thickness direction; a second insulating layer with a flat surface formed on the first insulating layer covering the column-like conductive plugs and the wall-like conductive plugs; and first wirings having dual damascene structures. Each of the first wirings has a first portion penetrating the second insulating layer in the thickness direction and connected to at least one of the columnar conductive plugs, and a second portion formed in the second insulating layer to an intermediate depth and apparently intersects at least one of the wall-like conductive plugs when viewed above.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: April 13, 2010
    Assignee: Fujitsu Microelectronics Ltd.
    Inventor: Taiji Ema
  • Patent number: 7671384
    Abstract: An integrated circuit device comprises a memory cell well formed with a flash memory device, first and second well of opposite conductivity types for formation of high voltage transistors, and third and fourth wells of opposite conductivity types for low voltage transistors, wherein at least one of the first and second wells and at least one of the third and fourth wells have an impurity distribution profile steeper than the memory cell well.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: March 2, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki