Patents by Inventor Taiqing Qiu

Taiqing Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200075784
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region. A second conductive contact structure is disposed on the second polycrystalline silicon emitter region.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Seung Bum Rim, David D. Smith, Taiqing Qiu, Staffan Westerberg, Kieran Mark Tracy, Venkatasubramani Balu
  • Publication number: 20200066930
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
  • Patent number: 10516071
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: December 24, 2019
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Perine Jaffrennou, Nada Habka, Sergej Filonovich
  • Publication number: 20190386158
    Abstract: Methods of fabricating solar cells using plasma-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described. In an example, a method of fabricating a solar cell includes forming a dielectric layer on a light-receiving surface of a silicon substrate. The method also includes forming an anti-reflective coating (ARC) layer over the dielectric layer. The method also includes exposing the ARC layer to plasma-induced radiation.
    Type: Application
    Filed: December 13, 2017
    Publication date: December 19, 2019
    Inventors: Taiqing Qiu, Emeline Soichi, Périne Jaffrennou
  • Patent number: 10476432
    Abstract: High throughput systems for photovoltaic UV degradation testing of solar cells, and methods of testing for UV degradation of solar cell during manufacture, are described herein. In an example, a high throughput solar cell testing apparatus includes a plurality of real time ultra-violet (RTUV) testing modules. Each of the RTUV testing modules includes an ultra-violet (UV) light source, an optics assembly for focusing light from the UV light source on a sample area, and a detector for receiving photoluminescence energy from the sample area. The high throughput solar cell testing apparatus also includes an acquisition and control assembly coupled to the plurality of RTUV testing modules.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: November 12, 2019
    Assignee: SunPower Corporation
    Inventors: David Aitan Soltz, Yoann Buratti, Xiuwen Tu, Ryan Manuel Lacerda, Taiqing Qiu
  • Publication number: 20190273467
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 10262864
    Abstract: Point-of-use enrichment of gas mixtures for semiconductor structure fabrication, and systems for providing point-of-use enrichment of gas mixtures, are described herein. In an example, a system for fabricating a semiconductor structure includes a process chamber for processing a substrate of a semiconductor structure. A gas supply is coupled to the process chamber. A point-of-use gas enrichment module is coupled to the gas supply. The point-of-use gas enrichment module is configured to concentrate a first gas composition to provide a second gas composition to the gas supply for the process chamber. The second gas composition has a relative amount of a hydride species greater than a relative amount of corresponding hydride species in the first gas composition.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: April 16, 2019
    Assignee: SunPower Corporation
    Inventors: Taiqing Qiu, Glyn Jeremy Reynolds, Xiao Bai
  • Patent number: 10230329
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: March 12, 2019
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20180286995
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Inventors: MICHAEL C. JOHNSON, TAIQING QIU, DAVID D. SMITH, PETER JOHN COUSINS, STAFFAN WESTERBERG
  • Patent number: 10030303
    Abstract: Sputter tools are described. In one embodiment, an apparatus to support a wafer includes a pallet having a depression to receive the wafer. The pallet includes an opening below the depression, and an edge in the depression is to support the wafer over the opening. A cover at least partially covers the opening. In one example, the cover may be a plate with one or more holes, and a pipe may be located below each of the holes in the cover. In one embodiment, a wafer-processing system includes a processing chamber and a pallet with a depression to receive a wafer. The pallet has an opening below the depression, and an edge in the depression supports the wafer over the opening. In one such embodiment, a cover at least partially covers the opening. According to one embodiment, an energy-absorbing material is disposed below the opening in the pallet.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 24, 2018
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Yu-Chen Shen, Taiqing Qiu, Robert Woehl, Kieran Mark Tracy, Mukul Agrawal
  • Publication number: 20180190492
    Abstract: Point-of-use enrichment of gas mixtures for semiconductor structure fabrication, and systems for providing point-of-use enrichment of gas mixtures, are described herein. In an example, a system for fabricating a semiconductor structure includes a process chamber for processing a substrate of a semiconductor structure. A gas supply is coupled to the process chamber. A point-of-use gas enrichment module is coupled to the gas supply. The point-of-use gas enrichment module is configured to concentrate a first gas composition to provide a second gas composition to the gas supply for the process chamber. The second gas composition has a relative amount of a hydride species greater than a relative amount of corresponding hydride species in the first gas composition.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: Taiqing Qiu, Glyn Jeremy Reynolds, Xiao Bai
  • Patent number: 9997652
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 12, 2018
    Assignee: SunPower Corporation
    Inventors: Michael C. Johnson, Taiqing Qiu, David D. Smith, Peter John Cousins, Staffan Westerberg
  • Publication number: 20180138354
    Abstract: A curing tool for fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a curing tool combines a UV-exposure stage and one or more of a deposition or an annealing stage to fabricate a solar cell. For example, a radiation curing stage can precede a back end processing stage used to perform operations on a back contact solar cell. The curing tool can therefore be used to perform a method to improve UV stability of solar cells.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 17, 2018
    Inventors: Périne Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Kieran Mark Tracy, Taiqing Qiu, Michael C. Johnson, Seung Bum Rim
  • Publication number: 20180041165
    Abstract: High throughput systems for photovoltaic UV degradation testing of solar cells, and methods of testing for UV degradation of solar cell during manufacture, are described herein. In an example, a high throughput solar cell testing apparatus includes a plurality of real time ultra-violet (RTUV) testing modules. Each of the RTUV testing modules includes an ultra-violet (UV) light source, an optics assembly for focusing light from the UV light source on a sample area, and a detector for receiving photoluminescence energy from the sample area. The high throughput solar cell testing apparatus also includes an acquisition and control assembly coupled to the plurality of RTUV testing modules.
    Type: Application
    Filed: December 30, 2016
    Publication date: February 8, 2018
    Inventors: David Aitan Soltz, Yoann Buratti, Xiuwen Tu, Ryan Manuel Lacerda, Taiqing Qiu
  • Publication number: 20170222072
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region. A second conductive contact structure is disposed on the second polycrystalline silicon emitter region.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 3, 2017
    Inventors: Seung Bum Rim, David D. Smith, Taiqing Qiu, Staffan Westerberg, Kieran Mark Tracy, Venkatasubramani Balu
  • Publication number: 20170149383
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20170141255
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Perine Jaffrennou, Nada Habka, Sergej Filonovich
  • Patent number: 9634177
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region. A second conductive contact structure is disposed on the second polycrystalline silicon emitter region.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 25, 2017
    Assignee: SunPower Corporation
    Inventors: Seung Bum Rim, David D. Smith, Taiqing Qiu, Staffan Westerberg, Kieran Mark Tracy, Venkatasubramani Balu
  • Patent number: 9564854
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 7, 2017
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 9559245
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 31, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich