Patents by Inventor Taiqing Qiu
Taiqing Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12176449Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.Type: GrantFiled: August 23, 2021Date of Patent: December 24, 2024Assignee: Maxeon Solar Pte. Ltd.Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
-
Patent number: 11502208Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region. A second conductive contact structure is disposed on the second polycrystalline silicon emitter region.Type: GrantFiled: November 8, 2019Date of Patent: November 15, 2022Assignee: SunPower CorporationInventors: Seung Bum Rim, David D. Smith, Taiqing Qiu, Staffan Westerberg, Kieran Mark Tracy, Venkatasubramani Balu
-
Publication number: 20220020889Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.Type: ApplicationFiled: August 23, 2021Publication date: January 20, 2022Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
-
Patent number: 11101398Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.Type: GrantFiled: October 28, 2019Date of Patent: August 24, 2021Assignees: SunPower Corporation, Total Marketing ServicesInventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
-
Patent number: 10840395Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.Type: GrantFiled: June 7, 2018Date of Patent: November 17, 2020Assignee: SunPower CorporationInventors: Michael C. Johnson, Taiqing Qiu, David D. Smith, Peter John Cousins, Staffan Westerberg
-
Patent number: 10804843Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.Type: GrantFiled: March 11, 2019Date of Patent: October 13, 2020Assignee: SunPower CorporationInventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
-
Publication number: 20200227583Abstract: Solar cell emitter regions fabrication is described. In an example, a species mask, e.g., a shadow mask, is provided between a plasma source and a semiconductor wafer. The species mask includes an opening pattern having several openings with respective opening widths and pitches. Species emitted by the plasma source pass through the openings in the species mask and implant in the semiconductor wafer to form several emitter region fingers having respective finger widths and pitches. In an embodiment, the opening widths and pitches vary across the species mask and the emitter region finger widths and pitches are uniform across the semiconductor wafer.Type: ApplicationFiled: October 4, 2017Publication date: July 16, 2020Inventors: Xiao BAI, Taiqing QIU
-
Publication number: 20200075784Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region. A second conductive contact structure is disposed on the second polycrystalline silicon emitter region.Type: ApplicationFiled: November 8, 2019Publication date: March 5, 2020Inventors: Seung Bum Rim, David D. Smith, Taiqing Qiu, Staffan Westerberg, Kieran Mark Tracy, Venkatasubramani Balu
-
Publication number: 20200066930Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.Type: ApplicationFiled: October 28, 2019Publication date: February 27, 2020Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
-
Patent number: 10516071Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.Type: GrantFiled: January 30, 2017Date of Patent: December 24, 2019Assignees: SunPower Corporation, Total Marketing ServicesInventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Perine Jaffrennou, Nada Habka, Sergej Filonovich
-
Publication number: 20190386158Abstract: Methods of fabricating solar cells using plasma-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described. In an example, a method of fabricating a solar cell includes forming a dielectric layer on a light-receiving surface of a silicon substrate. The method also includes forming an anti-reflective coating (ARC) layer over the dielectric layer. The method also includes exposing the ARC layer to plasma-induced radiation.Type: ApplicationFiled: December 13, 2017Publication date: December 19, 2019Inventors: Taiqing Qiu, Emeline Soichi, Périne Jaffrennou
-
Patent number: 10476432Abstract: High throughput systems for photovoltaic UV degradation testing of solar cells, and methods of testing for UV degradation of solar cell during manufacture, are described herein. In an example, a high throughput solar cell testing apparatus includes a plurality of real time ultra-violet (RTUV) testing modules. Each of the RTUV testing modules includes an ultra-violet (UV) light source, an optics assembly for focusing light from the UV light source on a sample area, and a detector for receiving photoluminescence energy from the sample area. The high throughput solar cell testing apparatus also includes an acquisition and control assembly coupled to the plurality of RTUV testing modules.Type: GrantFiled: December 30, 2016Date of Patent: November 12, 2019Assignee: SunPower CorporationInventors: David Aitan Soltz, Yoann Buratti, Xiuwen Tu, Ryan Manuel Lacerda, Taiqing Qiu
-
Publication number: 20190273467Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.Type: ApplicationFiled: March 11, 2019Publication date: September 5, 2019Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
-
Patent number: 10262864Abstract: Point-of-use enrichment of gas mixtures for semiconductor structure fabrication, and systems for providing point-of-use enrichment of gas mixtures, are described herein. In an example, a system for fabricating a semiconductor structure includes a process chamber for processing a substrate of a semiconductor structure. A gas supply is coupled to the process chamber. A point-of-use gas enrichment module is coupled to the gas supply. The point-of-use gas enrichment module is configured to concentrate a first gas composition to provide a second gas composition to the gas supply for the process chamber. The second gas composition has a relative amount of a hydride species greater than a relative amount of corresponding hydride species in the first gas composition.Type: GrantFiled: December 30, 2016Date of Patent: April 16, 2019Assignee: SunPower CorporationInventors: Taiqing Qiu, Glyn Jeremy Reynolds, Xiao Bai
-
Patent number: 10230329Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.Type: GrantFiled: February 6, 2017Date of Patent: March 12, 2019Assignee: SunPower CorporationInventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
-
Publication number: 20180286995Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.Type: ApplicationFiled: June 7, 2018Publication date: October 4, 2018Inventors: MICHAEL C. JOHNSON, TAIQING QIU, DAVID D. SMITH, PETER JOHN COUSINS, STAFFAN WESTERBERG
-
Patent number: 10030303Abstract: Sputter tools are described. In one embodiment, an apparatus to support a wafer includes a pallet having a depression to receive the wafer. The pallet includes an opening below the depression, and an edge in the depression is to support the wafer over the opening. A cover at least partially covers the opening. In one example, the cover may be a plate with one or more holes, and a pipe may be located below each of the holes in the cover. In one embodiment, a wafer-processing system includes a processing chamber and a pallet with a depression to receive a wafer. The pallet has an opening below the depression, and an edge in the depression supports the wafer over the opening. In one such embodiment, a cover at least partially covers the opening. According to one embodiment, an energy-absorbing material is disposed below the opening in the pallet.Type: GrantFiled: December 19, 2014Date of Patent: July 24, 2018Assignees: SunPower Corporation, Total Marketing ServicesInventors: Yu-Chen Shen, Taiqing Qiu, Robert Woehl, Kieran Mark Tracy, Mukul Agrawal
-
Publication number: 20180190492Abstract: Point-of-use enrichment of gas mixtures for semiconductor structure fabrication, and systems for providing point-of-use enrichment of gas mixtures, are described herein. In an example, a system for fabricating a semiconductor structure includes a process chamber for processing a substrate of a semiconductor structure. A gas supply is coupled to the process chamber. A point-of-use gas enrichment module is coupled to the gas supply. The point-of-use gas enrichment module is configured to concentrate a first gas composition to provide a second gas composition to the gas supply for the process chamber. The second gas composition has a relative amount of a hydride species greater than a relative amount of corresponding hydride species in the first gas composition.Type: ApplicationFiled: December 30, 2016Publication date: July 5, 2018Inventors: Taiqing Qiu, Glyn Jeremy Reynolds, Xiao Bai
-
Patent number: 9997652Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.Type: GrantFiled: September 25, 2015Date of Patent: June 12, 2018Assignee: SunPower CorporationInventors: Michael C. Johnson, Taiqing Qiu, David D. Smith, Peter John Cousins, Staffan Westerberg
-
Publication number: 20180138354Abstract: A curing tool for fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a curing tool combines a UV-exposure stage and one or more of a deposition or an annealing stage to fabricate a solar cell. For example, a radiation curing stage can precede a back end processing stage used to perform operations on a back contact solar cell. The curing tool can therefore be used to perform a method to improve UV stability of solar cells.Type: ApplicationFiled: November 9, 2017Publication date: May 17, 2018Inventors: Périne Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Kieran Mark Tracy, Taiqing Qiu, Michael C. Johnson, Seung Bum Rim