Patents by Inventor Takanori Matsuda

Takanori Matsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240294497
    Abstract: Provided is compound (3d) or a salt thereof, wherein the content of compound (IM-7) is 0.48 mass % or lower.
    Type: Application
    Filed: August 29, 2022
    Publication date: September 5, 2024
    Inventors: Mitsuo NAGAI, Takashi FUKUYAMA, Yasuaki KAMADA, Jun NIIJIMA, Hirofumi KURODA, Keiichi MURAKAMI, Yuki KAROJI, Hiroyuki SAITO, Masayuki OMORI, Yusuke MIYASHITA, Atsushi KAMADA, Masaaki MATSUDA, Takanori KODERA
  • Patent number: 11837975
    Abstract: A piezoelectric material includes: an oxide containing Na, Ba, Nb, Ti, and Mn, in which the oxide has a perovskite-type structure, a total amount of metal elements other than Na, Ba, Nb, Ti, and Mn contained in the piezoelectric material is 0.5 mol % or less with respect to a total amount of Na, Ba, Nb, Ti, and Mn, a molar ratio x of Ti to a total molar amount of Nb and Ti is 0.05?x?0.12, a molar ratio y of Na to Nb is 0.93?y?0.98, a molar ratio z of Ba to Ti is 1.09?z?1.60, a molar ratio m of Mn to the total molar amount of Nb and Ti is 0.0006?m?0.0030, and 1.07?y×z?1.50 is satisfied.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 5, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kanako Oshima, Hisato Yabuta, Takanori Matsuda, Miki Ueda, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Patent number: 11831254
    Abstract: The present invention provides a vibrator made of a non-lead-based piezoelectric material and capable of being driven at a sufficient speed with low power consumption, and provides a vibration wave drive device and an electronical device each using the vibrator. To that end, the vibrator according to the present invention includes a piezoelectric element including a piezoelectric material and electrodes, and an elastic body, wherein a Pb component contained in the piezoelectric material is less than 1000 ppm, and a resonance frequency fA in a vibration mode A and a resonance frequency fB in a vibration mode B satisfy a relation of an absolute value of (fB?fA)>2 (kHz), the vibration mode A and the vibration mode B generating vibration waves in the elastic body with wave fronts of the vibration waves intersecting each other.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 28, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuo Furuta, Takayuki Watanabe, Miki Ueda, Shinya Koyama, Makoto Kubota, Takanori Matsuda, Akira Uebayashi, Jumpei Hayashi, Hitoshi Nishitani
  • Publication number: 20230219337
    Abstract: A tank unit is configured to introduce liquid supplied from a container and to lead out liquid toward a head configured to eject the liquid. The tank unit includes a storage section that stores the liquid supplied from the container, an introduction section that introduces the liquid supplied from the container into the storage section, an atmosphere opening section configured to open inside of the storage section to atmosphere, and an outlet section that leads out the liquid stored in the storage section. The introduction section is connected to the storage section, extends in a vertical direction in the storage section, and has an open end located within the storage section. The storage section includes a blocking section including a first protruding section located at a position in the vertical direction facing the open end and a second protruding section extending upward from the first protruding section.
    Type: Application
    Filed: January 4, 2023
    Publication date: July 13, 2023
    Inventors: Satoshi INOMATA, Takanori MATSUDA
  • Patent number: 11515468
    Abstract: Provided is a piezoelectric ceramics having a gradual change in piezoelectric constant depending on an ambient temperature. Specifically, provided is a single-piece piezoelectric ceramics including as a main component a perovskite-type metal oxide represented by a compositional formula of ABO3, wherein an A site element in the compositional formula contains Ba and M1, the M1 being formed of at least one kind selected from the group consisting of Ca and Bi, wherein a B site element in the compositional formula contains T1 and M2, the M2 being formed of at least one kind selected from the group consisting of Zr, Sn, and Hf, wherein concentrations of the M1 and the M2 change in at least one direction of the piezoelectric ceramics, and wherein increase and decrease directions of concentration changes of the M1 and the M2 are directions opposite to each other.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 29, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Yasushi Shimizu, Takanori Matsuda, Tatsuo Furuta, Kaoru Miura, Miki Ueda, Kanako Oshima
  • Patent number: 11509244
    Abstract: A lead-free piezoelectric material includes perovskite-type metal oxide containing Na, Nb, Ba, Ti, and Mg and indicates excellent piezoelectric properties. The piezoelectric material satisfies the following relational expression (1): 0.430?a?0.460, 0.433?b?0.479, 0.040?c?0.070, 0.0125?d?0.0650, 0.0015?e?0.0092, 0.9×3e?c?d?1.1×3e, a+b+c+d+e=1, where a, b, c, d, and e denote the relative numbers of Na, Nb, Ba, Ti, and Mg atoms, respectively.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: November 22, 2022
    Assignees: CANON KABUSHIKI KAISHA, FUJI CHEMICAL CO., LTD.
    Inventors: Takanori Matsuda, Makoto Kubota, Hisato Yabuta, Miki Ueda, Kanako Oshima, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Patent number: 11495732
    Abstract: A piezoelectric transformer comprises at least a laminate of a first member, a first piezoelectric element, a second piezoelectric element and a second member sequentially stacked one on the other in the above-listed order and a pressurizing mechanism for squeezing the first member and the second member together in the stacking direction. The ratio of the electromechanical coupling coefficient k33 relative to the electromechanical coupling coefficient k31 (k33/k31) of the first piezoelectric element and the second piezoelectric element is not less than 2.0.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: November 8, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akira Uebayashi, Miki Ueda, Takanori Matsuda, Makoto Kubota
  • Patent number: 11489462
    Abstract: Provided is a lead-free piezoelectric material reduced in dielectric loss tangent, and achieving both a large piezoelectric constant and a large mechanical quality factor. A piezoelectric material according to at least one embodiment of the present disclosure is a piezoelectric material including a main component formed of a perovskite-type metal oxide represented by the general formula (1): Nax+s(1?y)(BiwBa1?s?w)1?yNbyTi1?yO3 (where 0.84?x?0.92, 0.84?y?0.92, 0.002?(w+s)(1?y)?0.035, and 0.9?w/s?1.1), and a Mn component, wherein the content of the Mn is 0.01 mol % or more and 1.00 mol % or less with respect to the perovskite-type metal oxide.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: November 1, 2022
    Assignees: CANON KABUSHIKI KAISHA, FUJI CHEMICAL CO., LTD.
    Inventors: Kanako Oshima, Miki Ueda, Takanori Matsuda, Makoto Kubota, Hisato Yabuta, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Publication number: 20220293849
    Abstract: Provided is a piezoelectric material which is free of lead, has small temperature dependence of a piezoelectric constant and has a satisfactory piezoelectric constant. The piezoelectric material includes: an oxide having a perovskite-type structure containing Ba, Ca, Ti, and Zr; Mn; Bi; and W, wherein a ratio of the sum of the Ba and the Ca with respect to the sum of the Ti and the Zr is 0.986 or more and 1.02 or less, and wherein, with respect to 100 parts by mass of the oxide, a content of the Mn is 0.040 part by mass or more and 0.360 part by mass or less, a content of the Bi is 0.050 part by mass or more and 0.240 part by mass or less, and a content of the W is 0.100 part by mass or more and 0.380 part by mass or less.
    Type: Application
    Filed: March 3, 2022
    Publication date: September 15, 2022
    Inventors: Takanori Matsuda, Tatsuo Furuta, Hisato Yabuta, Akira Uebayashi
  • Patent number: 11272080
    Abstract: A vibration device comprises a vibrating member having at least n (n?2) piezoelectric elements arranged on a vibrating plate, each of the piezoelectric elements being formed by using a lead-free piezoelectric material and electrodes, wherein if the temperature that maximizes the piezoelectric constant of the piezoelectric material of each of the n piezoelectric elements is expressed as Tm (m being a natural number between 1 and n), at least two of T1 through Tn differ from each other.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 8, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yasushi Shimizu, Takanori Matsuda, Shinya Koyama, Makoto Kubota, Akira Uebayashi, Kanako Oshima
  • Patent number: 11203763
    Abstract: A microbial oil is obtained from Labyrinthulomycetes in which a gene for fatty acid biosynthesis has been disrupted or an expression of the gene has been inhibited to highly accumulate the fatty acid. The microbial oil typically contains: (a) 1.5% or more of arachidonic acid (AA) based on a total amount of fatty acid; (b) 0.2% or more of dihomo-?-linolenic acid (DGLA) based on the total amount of fatty acid; (c) 0.04% or more of eicosatetraenoic acid (ETA) based on the total amount of fatty acid; (d) 3.8% or more of eicosapentaenoic acid (EPA) based on the total amount of fatty acid; (e) 13.7% or less of n-6 docosapentaenoic acid (n-6DPA) based on the total amount of fatty acid; and (f) 43.9% or less of docosahexaenoic acid (DHA) based on the total amount of fatty acid.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: December 21, 2021
    Assignee: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Keishi Sakaguchi, Rie Hamaguchi, Takanori Matsuda, Makoto Ito, Naoki Nagano, Masahiro Hayashi, Yuji Okita, Shinichi Sugimoto, Daisuke Honda
  • Patent number: 11179942
    Abstract: A liquid ejection system includes: a liquid ejection apparatus; and a liquid storage container, wherein the liquid ejection apparatus includes a mounting unit having an apparatus-side terminal portion that is elastically deformable in a mounting direction, and an apparatus-side locking portion that restricts the liquid storage container from moving in a direction opposite to the mounting direction of the liquid storage container, and the liquid storage container includes a top surface located on an upper side in a vertical direction in a mounted state in which the liquid storage container is mounted, a container-side locking portion, the container-side locking portion being provided on the top surface, and a container-side terminal portion coupled to the apparatus-side terminal portion, the container-side terminal portion being provided at a position closer to the top surface than to a center of the liquid storage container in the vertical direction.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: November 23, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Naoki Naito, Takeshi Komaki, Noriyuki Fukasawa, Takanori Matsuda
  • Publication number: 20210328131
    Abstract: Provided are a piezoelectric ceramics which does not contain lead, has small temperature dependence of a piezoelectric constant within an operating temperature range, and has high density, a high mechanical quality factor, a satisfactory piezoelectric constant, and a small surface roughness, and a method of manufacturing the piezoelectric ceramics. The method of manufacturing a piezoelectric ceramics is characterized by including: sintering a compact containing a raw material at 1,000° C. or more to obtain a sintered compact; abrading the sintered compact; and annealing the abraded sintered compact at a temperature of 800° C. or more and less than 1,000° C.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 21, 2021
    Inventors: Tatsuo Furuta, Takanori Matsuda, Hisato Yabuta, Akira Uebayashi
  • Publication number: 20210305492
    Abstract: A piezoelectric material having a large electromechanical coupling coefficient is provided. The material is manufactured by a method including the steps of: heating a piezoelectric material having a low-temperature side ferroelectric phase A and a high-temperature side ferroelectric phase B between which the phase of the piezoelectric material transitions according to a temperature change, from room temperature to a temperature range higher than T(B?A) at which temperature a change from the ferroelectric phase B to the ferroelectric phase A occurs in a temperature lowering process and lower than T(A?B) at which temperature a change from the ferroelectric phase A to the ferroelectric phase B occurs in a temperature rising process; starting application of an electric field to the piezoelectric material in a state where it is held within this temperature range; and continuing and finishing the electric field application at a temperature lower than T(A?B).
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Miki Ueda, Takanori Matsuda, Tatsuo Furuta, Hisato Yabuta, Akira Uebayashi
  • Patent number: 10981390
    Abstract: The liquid container comprises: a first chamber that is surrounded by a plurality of walls and is configured to contain a liquid; a liquid inlet port for pouring the liquid into the first chamber; an air opening port that is opened to air; a liquid lead-out port that leads the liquid out of the first chamber; an air lead-in port that is formed in, out of the plurality of walls surrounding the first chamber, a first wall different from the wall constituting a top surface; and an air communication path that allows the air opening port and the air lead-in port to communicate with each other. The air lead-in port is separated from a corner portion where the first wall crosses with another wall.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: April 20, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Hidenao Suzuki, Naomi Kimura, Shoma Kudo, Takanori Matsuda, Koji Kawai
  • Patent number: 10815505
    Abstract: A microbial oil is extracted from stramenopile transformed with a gene associated with synthesis of fatty acids, the gene encoding a fatty acid desaturase. The stramenopile belongs to the class Labyrinthulomycete. The microbial oil satisfies one or more of the following requirements: (a) an amount of arachidonic acid is 7% or less based on a total amount of the fatty acid composition; (b) an amount of DPA is 9% or less based on the total amount of the fatty acid composition; (c) an amount of ETA is 0.04% or more based on the total amount of the fatty acid composition; (d) an amount of EPA is 7% or more based on the total amount of the fatty acid composition; and (e) an amount of DHA is 45% or more based on the total amount of the fatty acid composition.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 27, 2020
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, UNIVERSITY OF MIYAZAKI, Konan Gakuen, NIPPON SUISAN KAISHA, LTD.
    Inventors: Keishi Sakaguchi, Takanori Matsuda, Takumi Kobayashi, Makoto Ito, Naoki Nagano, Masahiro Hayashi, Daisuke Honda, Yosuke Taoka, Yuji Okita, Hitoshi Izumida, Shinichi Sugimoto
  • Publication number: 20200298576
    Abstract: A liquid ejection system includes: a liquid ejection apparatus; and a liquid storage container, wherein the liquid ejection apparatus includes a mounting unit having an apparatus-side terminal portion that is elastically deformable in a mounting direction, and an apparatus-side locking portion that restricts the liquid storage container from moving in a direction opposite to the mounting direction of the liquid storage container, and the liquid storage container includes a top surface located on an upper side in a vertical direction in a mounted state in which the liquid storage container is mounted, a container-side locking portion, the container-side locking portion being provided on the top surface, and a container-side terminal portion coupled to the apparatus-side terminal portion, the container-side terminal portion being provided at a position closer to the top surface than to a center of the liquid storage container in the vertical direction.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Naoki NAITO, Takeshi KOMAKI, Noriyuki FUKASAWA, Takanori MATSUDA
  • Patent number: 10727395
    Abstract: A piezoelectric material including a perovskite-type metal oxide represented by the following general formula (1); Bi; and Mn, wherein the content of Bi is 0.1-0.5 mol % with respect to 1 mol of the metal oxide, the content of Mn is 0.3-1.5 mol % with respect to 1 mol of the metal oxide, and the piezoelectric material satisfies (L4?L5)/L5?0.05 and (L8?L9)/L9?0.05 when the lengths of twelve Bi—O bonds with Bi that is located at a 12-fold site with respect to O in a perovskite-type unit cell as a starting point are taken to be L1 to L12 in length order: (Ba1-xM1x)(Ti1-yM2y)O3??(1) wherein 0?x?0.2, 0?y?0.1, and M1 and M2 are mutually different metal elements which have a total valence of +6 and are selected from other elements than Ba, Ti, Bi and Mn.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 28, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Hisato Yabuta, Toshihiro Ifuku, Takanori Matsuda, Takayuki Watanabe, Makoto Kubota, Tatsuo Furuta, Hidenori Tanaka
  • Publication number: 20200169191
    Abstract: A piezoelectric material includes: an oxide containing Na, Ba, Nb, Ti, and Mn, in which the oxide has a perovskite-type structure, a total amount of metal elements other than Na, Ba, Nb, Ti, and Mn contained in the piezoelectric material is 0.5 mol % or less with respect to a total amount of Na, Ba, Nb, Ti, and Mn, a molar ratio x of Ti to a total molar amount of Nb and Ti is 0.05?x?0.12, a molar ratio y of Na to Nb is 0.93?y?0.98, a molar ratio z of Ba to Ti is 1.09?z?1.60, a molar ratio m of Mn to the total molar amount of Nb and Ti is 0.0006?m?0.0030, and 1.07?y×z?1.50 is satisfied.
    Type: Application
    Filed: January 29, 2020
    Publication date: May 28, 2020
    Inventors: Makoto Kubota, Kanako Oshima, Hisato Yabuta, Takanori Matsuda, Miki Ueda, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Publication number: 20200169192
    Abstract: A lead-free piezoelectric material includes perovskite-type metal oxide containing Na, Nb, Ba, Ti, and Mg and indicates excellent piezoelectric properties. The piezoelectric material satisfies the following relational expression (1): 0.430?a?0.460, 0.433?b?0.479, 0.040?c?0.070, 0.0125?d?0.0650, 0.0015?e?0.0092, 0.9×3e?c?d?1.1×3e, a+b+c+d+e=1, where a, b, c, d, and e denote the relative numbers of Na, Nb, Ba, Ti, and Mg atoms, respectively.
    Type: Application
    Filed: January 29, 2020
    Publication date: May 28, 2020
    Inventors: Takanori Matsuda, Makoto Kubota, Hisato Yabuta, Miki Ueda, Kanako Oshima, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu