Patents by Inventor Takanori Matsuda

Takanori Matsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160284976
    Abstract: A piezoelectric material that does not use lead and potassium and has a high piezoelectric constant and good insulating properties and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains a perovskite-type metal oxide represented by general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (1) (where 0.80?x?0.95 and 0.85?y?0.95), and an auxiliary component containing at least one selected from the group consisting of Si and B. A content of the auxiliary component on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less relative to 100 parts by weight of the perovskite-type metal oxide.
    Type: Application
    Filed: June 7, 2016
    Publication date: September 29, 2016
    Inventors: Takanori Matsuda, Takayuki Watanabe, Shunsuke Murakami, Miki Ueda
  • Patent number: 9419204
    Abstract: A lead-free piezoelectric material that does not undergo depolarization in a wide operating temperature range and has a good piezoelectric constant is provided. A piezoelectric material include a perovskite-type metal oxide represented by (Ba1-xCax)a(Ti1-yZry)O3 (where 1.00?a?1.01, 0.125?x?0.175, and 0.055?y?0.090) as a main component, and manganese incorporated in the perovskite-type metal oxide. The manganese content relative to 100 parts by weight of the perovskite-type metal oxide is 0.02 parts by weight or more and 0.10 parts by weight or less on a metal basis.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 16, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Tatsuo Furuta, Yasushi Shimizu, Takanori Matsuda, Hiroshi Saito, Makoto Kubota
  • Patent number: 9412931
    Abstract: Provided is a lead-free piezoelectric ceramics having enhanced mechanical quality factor (Qm) and mechanical strength. The piezoelectric ceramics, includes at least a first crystal grain and a second crystal grain. The first crystal grain has an average equivalent circle diameter of 2 ?m or more and 30 ?m or less. The first crystal grain includes a perovskite-type metal oxide represented by the following general formula (1) as a main component, and the second crystal grain includes a perovskite-type metal oxide represented by the following general formula (2) as a main component: (1) xBaTiO3-yCaTiO3-zCaZrO3; and (2) x?BaTiO3-y?CaTiO3-z?CaZrO3, provided that x, y, z, x?, y?, and z? satisfy x+y+z=1, x?+y?+z?=1, 0?x??0.15, 0.85?y??1, 0?z?0.05, x>x?, 0<y<y?, and z>0.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: August 9, 2016
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mikio Shimada, Toshiaki Aiba, Toshihiro Ifuku, Takanori Matsuda, Makoto Kubota, Tatsuo Furuta, Jumpei Hayashi
  • Patent number: 9379310
    Abstract: A piezoelectric material that does not use lead and potassium and has a high piezoelectric constant and good insulating properties and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains a perovskite-type metal oxide represented by general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (1) (where 0.80?x?0.95 and 0.85?y?0.95), and an auxiliary component containing at least one selected from the group consisting of Si and B. A content of the auxiliary component on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less relative to 100 parts by weight of the perovskite-type metal oxide.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 28, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Takayuki Watanabe, Shunsuke Murakami, Miki Ueda
  • Publication number: 20160104833
    Abstract: Provided are a barium titanate-based piezoelectric ceramics having satisfactory piezoelectric performance and a satisfactory mechanical quality factor (Qm), and a piezoelectric element using the same. Specifically provided are a piezoelectric ceramics, including: crystal particles; and a grain boundary between the crystal particles, in which the crystal particles each include barium titanate having a perovskite-type structure and manganese at 0.04% by mass or more and 0.20% by mass or less in terms of a metal with respect to the barium titanate, and the grain boundary includes at least one compound selected from the group consisting of Ba4Ti12O27 and Ba6Ti17O40, and a piezoelectric element using the same.
    Type: Application
    Filed: December 7, 2015
    Publication date: April 14, 2016
    Inventors: Tatsuya Suzuki, Masami Tsukamoto, Mikio Shimada, Toshihiro Ifuku, Takanori Matsuda, Makoto Kubota, Jumpei Hayashi
  • Patent number: 9252685
    Abstract: Provided is a dust removing device that can be designed and controlled appropriately and has high dust removal performance even at low temperature, and an imaging device using the dust removing device. In a dust removing device to be set on a base, including a piezoelectric element formed of a piezoelectric material and a pair of opposing electrodes, a vibration member, and a fixation member containing at least a high molecular compound component, a phase transition temperature T from a first ferroelectric crystal phase to a second ferroelectric crystal phase of the piezoelectric material is set to ?60° C.?T??5° C., and whereby, the dust removing device can be designed and controlled appropriately and high dust removal performance can be obtained even at low temperature.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: February 2, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshihiro Ifuku, Yasushi Shimizu, Tatsuo Furuta, Takanori Matsuda, Makoto Kubota, Jumpei Hayashi
  • Patent number: 9231188
    Abstract: Provided are a barium titanate-based piezoelectric ceramics having satisfactory piezoelectric performance and a satisfactory mechanical quality factor (Qm), and a piezoelectric element using the same. Specifically provided are a piezoelectric ceramics, including: crystal particles; and a grain boundary between the crystal particles, in which the crystal particles each include barium titanate having a perovskite-type structure and manganese at 0.04% by mass or more and 0.20% by mass or less in terms of a metal with respect to the barium titanate, and the grain boundary includes at least one compound selected from the group consisting of Ba4Ti12O27 and Ba6Ti17O40, and a piezoelectric element using the same.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 5, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuya Suzuki, Masami Tsukamoto, Mikio Shimada, Toshihiro Ifuku, Takanori Matsuda, Makoto Kubota, Jumpei Hayashi
  • Publication number: 20150364671
    Abstract: A piezoelectric material that does not use lead and potassium and has a high piezoelectric constant and good insulating properties and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains a perovskite-type metal oxide represented by general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (1) (where 0.80?x?0.95 and 0.85?y?0.95), and an auxiliary component containing at least one selected from the group consisting of Si and B. A content of the auxiliary component on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less relative to 100 parts by weight of the perovskite-type metal oxide.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 17, 2015
    Inventors: Takanori Matsuda, Takayuki Watanabe, Shunsuke Murakami, Miki Ueda
  • Publication number: 20150353944
    Abstract: A method for transforming a stramenopile includes transferring a foreign gene into the stramenopile which is a microorganism belonging to the class Labyrinthula, more specifically, to a genus Labyrinthula, Altornia, Aplanochytrium, Schizochytrium, Aurantiochytrium, Thraustochytrium, Ulkenia, etc. The foreign gene, which is a gene relating to tolerance against an antibiotic, a colorimetric protein and/or a fatty acid desaturase (?5 desaturase gene, ?12 desaturase gene and/or ?3 desaturase gene), is transferred by using the electroporation or gene-gun technique.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 10, 2015
    Applicants: KYUSHU UNIVERSITY, NAT'L UNIVERSITY CORPORATION, UNIVERSITY OF MIYAZAKI, KONAN GAKUEN, NIPPON SUISAN KAISHA, LTD.
    Inventors: Keishi Sakaguchi, Takanori Matsuda, Takumi Kobayashi, Makoto Ito, Naoki Nagano, Masahiro Hayashi, Daisuke Honda, Yosuke Taoka, Yuji Okita, Hitoshi Izumida, Shinichi Sugimoto
  • Publication number: 20150349239
    Abstract: A piezoelectric material that does not contain lead and has excellent piezoelectric constant and mechanical quality factor in a device driving temperature range (?30° C. to 50° C.) is provided. A piezoelectric material includes a main component containing a perovskite metal oxide represented by following general formula (1), and a first auxiliary component containing Mn, wherein an amount of the contained Mn is 0.002 moles or more and 0.015 moles or less relative to 1 mole of the metal oxide. (Ba1-yBy)a(Ti1-x-zZrxFez)O3??(1) (where 0.010?x?0.060, 0.001?y?0.015, 0.001?z?0.015, 0.950?y/z?1.050, and 0.986?a?1.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 3, 2015
    Inventors: Shunsuke Murakami, Takayuki Watanabe, Takanori Matsuda, Kanako Oshima, Makoto Kubota
  • Publication number: 20150349238
    Abstract: The present invention can provide a lead-free piezoelectric material having a high piezoelectric constant in the room temperature range. The present invention for this purpose is a piezoelectric material including a main component containing a perovskite metal oxide represented by following general formula (1), Baa(Ti1-xZrx)O3??(1) where 0.02?x?0.13 and 0.986?a?1.02, a first auxiliary component containing Mn, and a second auxiliary component containing trivalent Bi, wherein an amount of the contained Mn is 0.0020 moles or more and 0.0150 moles or less relative to 1 mole of the metal oxide, and an amount of the contained Bi is 0.00042 moles or more and 0.00850 moles or less relative to 1 mole of the metal oxide.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 3, 2015
    Inventors: Takanori Matsuda, Takayuki Watanabe, Shunsuke Murakami, Hiroshi Saito, Tatsuo Furuta
  • Publication number: 20150349241
    Abstract: A piezoelectric material that does not contain lead and has excellent and stable piezoelectric properties in a device operating temperature range is provided. The present invention for this purpose is a piezoelectric material including a main component containing a perovskite metal oxide represented by following general formula (1), a first auxiliary component containing Mn, and a second auxiliary component containing Bi charge-disproportionated into trivalent and pentavalent, wherein an amount of the contained Mn is 0.0020 moles or more and 0.0150 moles or less relative to 1 mole of the metal oxide, and an amount of the contained Bi is 0.0004 moles or more and 0.0085 moles or less relative to 1 mole of the metal oxide. Baa(Ti1-xZrx)O3??(1) (where 0.020?x?0.130 and 0.996?a?1.030).
    Type: Application
    Filed: May 28, 2015
    Publication date: December 3, 2015
    Inventors: Shunsuke Murakami, Takayuki Watanabe, Takanori Matsuda, Hisato Yabuta, Jumpei Hayashi
  • Publication number: 20150295160
    Abstract: To provide a lead-free piezoelectric material having a high and stable piezoelectric constant in a wide operating temperature range. The piezoelectric material contains a perovskite type metal oxide having the general formula (1), Mn, Mg, (Ba1-xCax)a(Ti1-y-zSnyZrz)O3??(1) (wherein x is in the range of 0.050?x?0.200, y is in the range of 0.010?y?0.040, and z is in the range of 0?z?0.040, provided that x?0.375(y+z)+0.050, and a is in the range of 0.9925+b?a?1.0025+b) wherein the amount b (mol) of Mn on a metal basis per mole of the metal oxide is in the range of 0.0048?b?0.0400, and the Mg content on a metal basis per 100 parts by weight of the metal oxide is 0.100 parts by weight or less.
    Type: Application
    Filed: October 23, 2013
    Publication date: October 15, 2015
    Inventors: Kanako Oshima, Hiroshi Saito, Tatsuo Furuta, Takanori Matsuda, Shunsuke Murakami
  • Patent number: 9159903
    Abstract: A piezoelectric material contains a main component containing a perovskite-type metal oxide having the formula (1); a first auxiliary component composed of Mn; and a second auxiliary component composed of Bi or Bi and Li, wherein the Mn content is 0.04 parts by weight or more and 0.400 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide, the Bi content is 0.042 parts by weight or more and 0.850 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide, and the Li content is 0.028 parts by weight or less (including 0 parts by weight) on a metal basis per 100 parts by weight of the metal oxide. (Ba1-xCax)a(Ti1-y-zSnyZrz)O3??(1) (wherein 0?x?0.080, 0.013?y?0.060, 0?z?0.040, and 0.986?a?1.020.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: October 13, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kanako Oshima, Takayuki Watanabe, Shunsuke Murakami, Hidenori Tanaka, Jumpei Hayashi, Hiroshi Saito, Takanori Matsuda
  • Patent number: 9150891
    Abstract: Disclosed is a transformation method whereby an ability to produce a useful substance of a stramenopile can be improved. The method for transforming a stramenopile comprises transferring a foreign gene into the stramenopile which is a microorganism belonging to the class Labyrinthula, more specifically, to a genus Labyrinthula, Altornia, Aplanochytrium, Schizochytrium, Aurantiochytrium, Thraustochytrium, Ulkenia, etc. Said foreign gene, which is a gene relating to tolerance against an antibiotic, a colorimetric protein and/or a fatty acid desaturase (?5 desaturase gene, ?12 desaturase gene and/or ?3 desaturase gene), is transferred by using the electroporation or gene-gun technique.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: October 6, 2015
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, UNIVERSITY OF MIYAZAKI, KONAN GAKUEN, NIPPON SUISAN KAISHA, LTD.
    Inventors: Keishi Sakaguchi, Takanori Matsuda, Takumi Kobayashi, Makoto Ito, Naoki Nagano, Masahiro Hayashi, Daisuke Honda, Yosuke Taoka, Yuji Okita, Hitoshi Izumida, Shinichi Sugimoto
  • Patent number: 9076967
    Abstract: A piezoelectric material contains a main component containing a perovskite-type metal oxide having the formula (1); a first auxiliary component composed of Mn; and a second auxiliary component composed of Bi or Bi and Li, wherein the Mn content is 0.04 parts by weight or more and 0.400 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide, the Bi content is 0.042 parts by weight or more and 0.850 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide, and the Li content is 0.028 parts by weight or less (including 0 parts by weight) on a metal basis per 100 parts by weight of the metal oxide. (Ba1-xCax)a(Ti1-y-zSnyZrz)O3??(1) (wherein 0?x?0.080, 0.013?y?0.060, 0?z?0.040, and 0.986?a?1.020.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: July 7, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kanako Oshima, Takayuki Watanabe, Shunsuke Murakami, Hidenori Tanaka, Jumpei Hayashi, Hiroshi Saito, Takanori Matsuda
  • Patent number: 9076969
    Abstract: A piezoelectric material including a barium bismuth niobate-based tungsten bronze structure metal oxide having a high degree of orientation is provided. A piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust cleaning device including the piezoelectric material are also provided. A piezoelectric material includes a tungsten bronze structure metal oxide that includes metal elements which are barium, bismuth, and niobium, and tungsten. The metal elements satisfy following conditions on a molar basis: when Ba/Nb=a, 0.30?a?0.40, and when Bi/Nb=b, 0.012?b?0.084. The tungsten content on a metal basis is 0.40 to 3.00 parts by weight relative to 100 parts by weight of the tungsten bronze structure metal oxide. The tungsten bronze structure metal oxide has a c-axis orientation.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 7, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Takanori Matsuda, Takayuki Watanabe
  • Patent number: 9062315
    Abstract: To provide a transformation method for producing a stramenopile organism having an improved unsaturated fatty acid production capability by disrupting a gene of the stramenopile organism or inhibiting the expression of the gene in a genetically engineering manner. [Solution] A method for transforming a stramenopile organism, which comprises disrupting a gene of the stramenopile organism or inhibiting the expression of the gene in a genetically engineering manner, and which is characterized in that the stramenopile organism is selected from Thraustochytrium aureum, Parietichytrium sarkarianum, Thraustochytrium roseum and Parietichytrium sp. and the gene to be disrupted or of which the expression is to be inhibited is a gene associated with the biosynthesis of a fatty acid.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: June 23, 2015
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, UNIVERISTY OF MIYAZAKI, KONAN GAKUEN, NIPPON SUISAN KAISHA, LTD.
    Inventors: Keishi Sakaguchi, Rie Hamaguchi, Takanori Matsuda, Makoto Ito, Naoki Nagano, Masahiro Hayashi, Daisuke Honda, Yuji Okita, Shinichi Sugimoto
  • Publication number: 20150171311
    Abstract: A piezoelectric material contains a main component containing a perovskite-type metal oxide represented by general formula (1), a first sub-component containing Mn, and a second sub-component containing Bi or Bi and Li. A Mn content relative to 100 parts by weight of the metal oxide is 0.500 parts by weight or less (including 0 parts by weight) in terms of metal, a Bi content relative to 100 parts by weight of the metal oxide is 0.042 parts by weight or more and 0.850 parts by weight or less in terms of metal, and a Li content relative to 100 parts by weight of the metal oxide is 0.028 parts by weight or less (including 0 parts by weight) in terms of metal: (Ba1-x-yCaxSny)?(Ti1-zZrz)O3 (where 0.020?x?0.200, 0.020?y?0.200, 0?z?0.085, 0.986???1.100).
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Makoto Kubota, Takanori Matsuda, Kanako Oshima, Hiroshi Saito
  • Patent number: 9054309
    Abstract: A piezoelectric material including a strontium calcium sodium niobate-based tungsten bronze structure metal oxide having a high degree of orientation is provided. A piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust cleaning device including the piezoelectric material are also provided. A piezoelectric material includes a tungsten bronze structure metal oxide that includes metal elements which are strontium, calcium, sodium, and niobium, and tungsten. The metal elements satisfy following conditions on a molar basis: when Sr/Nb=a, 0.320?a?0.430, when Ca/Nb=b, 0.008?b?0.086, and when Na/Nb=c, 0.180?c?0.200. The tungsten content on a metal basis is 0.40 to 3.20 parts by weight relative to 100 parts by weight of the tungsten bronze structure metal oxide. The tungsten bronze structure metal oxide has a c-axis orientation.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: June 9, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Takanori Matsuda, Takayuki Watanabe