Patents by Inventor Takanori Matsuda

Takanori Matsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9809033
    Abstract: A liquid container including: a liquid container part; a liquid injection part; an air introduction part; and a buffer part that is in communication with the liquid container part via a first communication path, and in communication with the air introduction part via a second communication path. the buffer part, when the liquid container is in a second orientation that is rotated from the first orientation by 180°, is configured to store the liquid having a volume that is equal to or larger than a volume of the liquid in the liquid container part such that a surface of the liquid is located below a second opening end of the first communication path in the buffer part and a third opening end of the second communication path in the buffer part.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: November 7, 2017
    Assignee: Seiko Epson Corporation
    Inventors: Takanori Matsuda, Shoma Kudo, Munehide Kanaya
  • Patent number: 9806251
    Abstract: A piezoelectric material contains a main component containing a perovskite-type metal oxide represented by general formula (1), a first sub-component containing Mn, and a second sub-component containing Bi or Bi and Li. A Mn content relative to 100 parts by weight of the metal oxide is 0.500 parts by weight or less (including 0 parts by weight) in terms of metal, a Bi content relative to 100 parts by weight of the metal oxide is 0.042 parts by weight or more and 0.850 parts by weight or less in terms of metal, and a Li content relative to 100 parts by weight of the metal oxide is 0.028 parts by weight or less (including 0 parts by weight) in terms of metal: (Ba1?x?yCaxSny)?(Ti1?zZrz)O3 (where 0.020?x?0.200, 0.020?y?0.200, 0?z?0.085, 0.986???1.100)??General formula (1).
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 31, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Takanori Matsuda, Kanako Oshima, Hiroshi Saito
  • Patent number: 9761788
    Abstract: Provided is a lead-free piezoelectric material having satisfactory piezoelectric constant and mechanical quality factor in a device driving temperature range (?30° C. to 50° C.) The piezoelectric material includes a main component containing a perovskite-type metal oxide represented by Formula 1, a first auxiliary component composed of Mn, and a second auxiliary component composed of Bi or Bi and Li. The content of Mn is 0.040 parts by weight or more and 0.500 parts by weight or less based on 100 parts by weight of the metal oxide on a metal basis. The content of Bi is 0.042 parts by weight or more and 0.850 parts by weight or less and the content of Li is 0.028 parts by weight or less (including 0 parts by weight) based on 100 parts by weight of the metal oxide on a metal basis. (Ba1-xCax)a(Ti1-yZry)O3 . . . (1), wherein, 0.030?x<0.090, 0.030?y?0.080, and 0.9860?a?1.0200.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: September 12, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shunsuke Murakami, Takanori Matsuda, Kanako Oshima, Jumpei Hayashi, Takayuki Watanabe, Hidenori Tanaka, Hiroshi Saito
  • Patent number: 9722171
    Abstract: The present invention provides a lead-free piezoelectric material having a high piezoelectric constant and a high mechanical quality factor in a wide operating temperature range. The piezoelectric material includes a perovskite-type metal oxide represented by Formula (1): (Ba1-xCax)a(Ti1-yZry)O3 (1.00?a?1.01, 0.125?x<0.155, and 0.041?y?0.074) as a main component. The metal oxide contains Mn in a content of 0.12 parts by weight or more and 0.40 parts by weight or less based on 100 parts by weight of the metal oxide on a metal basis.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 1, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Tatsuo Furuta, Yasushi Shimizu, Shinya Koyama, Akira Uebayashi, Hiroshi Saito, Makoto Kubota, Kenichi Akashi, Jumpei Hayashi
  • Publication number: 20170182813
    Abstract: A printer includes a printing unit including a printing head configured to eject ink onto a sheet and a sheet ejecting portion configured to eject the sheet after the printing head performs a printing operation, a scanner unit located above the printing unit and configured to read an image on a document, and a tank unit located on a lateral side of the printing unit. The tank unit includes a tank storing the ink to be supplied to the printing head and a housing covering the tank. The housing provides at least a front surface, a lateral surface, a rear surface, and an upper surface of the tank unit. A front surface of the printing unit is flush with the front surface of the tank unit when the printing unit has a front surface on a side of the sheet ejecting portion.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 29, 2017
    Inventors: Hidenao SUZUKI, Naomi KIMURA, Koji KAWAI, Shoma KUDO, Takanori MATSUDA
  • Patent number: 9673379
    Abstract: A piezoelectric material that does not contain lead and has excellent piezoelectric constant and mechanical quality factor in a device driving temperature range (?30° C. to 50° C.) is provided. A piezoelectric material includes a main component containing a perovskite metal oxide represented by following general formula (1), and a first auxiliary component containing Mn, wherein an amount of the contained Mn is 0.002 moles or more and 0.015 moles or less relative to 1 mole of the metal oxide. (Ba1-yBiy)a(Ti1-x-zZrxFez)O3??(1) (where 0.010?x?0.060, 0.001?y?0.015, 0.001?z?0.015, 0.950?y/z?1.050, and 0.986?a?1.020).
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: June 6, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shunsuke Murakami, Takayuki Watanabe, Takanori Matsuda, Kanako Oshima, Makoto Kubota
  • Publication number: 20170155035
    Abstract: Provided is a piezoelectric element containing no lead therein and having a satisfactory piezoelectric constant and a small dielectric loss tangent at room temperature (25° C.) In order to attain this, the piezoelectric element includes a substrate, a first electrode, a piezoelectric film, and a second electrode. The piezoelectric film contains barium zirconate titanate, manganese, and trivalent bismuth. The piezoelectric film satisfies 0.02?x?0.13, where x is a mole ratio of zirconium to the sum of zirconium and titanium. A manganese content is 0.002 moles or more and 0.015 moles or less for 1 mole of barium zirconate titanate, and a bismuth content is 0.00042 moles or more and 0.00850 moles or less for 1 mole of barium zirconate titanate.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 1, 2017
    Inventors: Takanori Matsuda, Makoto Kubota, Kaoru Miura
  • Publication number: 20170155036
    Abstract: A piezoelectric element comprises a substrate, a first electrode, a piezoelectric film and a second electrode that are sequentially laid in the above mentioned order. The piezoelectric film contains oxides of Ba, Bi, Ti, Zr, Fe and Mn and has a perovskite structure, wherein the molar ratio y of Bi relative to the sum of Ba and Bi is 0.001?y?0.015, the molar ratio x of Zr relative to the sum of Ti, Zr, Fe and Mn is 0.010?x?0.060, the molar ratio z of Fe relative to the sum of Ti, Zr, Fe and Mn is 0.001?z?0.015, and the molar ratio m of Mn relative to the sum of Ti, Zr, Fe and Mn is 0.0020?m?0.0150, while the relationship between y and z is expressed by 0.90?y/z?1.10.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 1, 2017
    Inventors: Makoto Kubota, Takanori Matsuda, Kaoru Miura
  • Publication number: 20170155037
    Abstract: Provided is a piezoelectric element including a substrate, electrodes, and a piezoelectric film, the piezoelectric film including an oxide including Ba, Ca, Ti, and Zr, and at least one element of Mn and Bi in which: 0.09?x?0.30 is satisfied, where x is a mole ratio of Ca to a sum of Ba and Ca; 0.025?y?0.085 is satisfied, where y is a mole ratio of Zr to a sum of Ti, Zr, and Sn; and 0?z?0.02 is satisfied, where z is a mole ratio of Sn to the sum of Ti, Zr, and Sn; a total content Save of Mn and Bi is 0.0020 moles or more and 0.0150 moles or less for 1 mole of the oxide; and a total content Sbou of Mn and Bi in a region of the piezoelectric film adjacent to one of the electrodes is smaller than Save.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 1, 2017
    Inventors: Makoto Kubota, Takanori Matsuda, Kaoru Miura
  • Publication number: 20170155034
    Abstract: Provided is a piezoelectric element containing no lead therein and having satisfactory and stable piezoelectric properties in a temperature range in which the piezoelectric element is used. In order to attain this, the piezoelectric element includes a substrate, a first electrode, a piezoelectric film, and a second electrode. The piezoelectric film contains barium zirconate titanate, manganese, and bismuth in a charge disproportionation state in which trivalent Bi and pentavalent Bi coexist. The piezoelectric film satisfies 0.02?x?0.13, where x is a mole ratio of zirconium to the sum of zirconium and titanium. A manganese content is 0.002 moles or more and 0.015 moles or less for 1 mole of barium zirconate titanate, and a bismuth content is 0.00042 moles or more and 0.00850 moles or less for 1 mole of barium zirconate titanate.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 1, 2017
    Inventors: Takanori Matsuda, Makoto Kubota, Kaoru Miura
  • Patent number: 9660175
    Abstract: A piezoelectric ceramic contains a main component, Mn as a first auxiliary component, and a second auxiliary component containing at least one element selected from the group consisting of Cu, B, and Si. The main component contains a perovskite metal oxide having the following general formula (1): (Ba1-xCax)a(Ti1-yZry)O3(0.100?x?0.145,0.010?y?0.039)??(1) The amount b (mol) of Mn per mole of the metal oxide is in the range of 0.0048?b?0.0400, the second auxiliary component content on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less per 100 parts by weight of the metal oxide, and the value a of the general formula (1) is in the range of 0.9925+b?a?1.0025+b.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: May 23, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Saito, Shunsuke Murakami, Miki Ueda, Hidenori Tanaka, Takanori Matsuda, Takayuki Watanabe, Makoto Kubota
  • Publication number: 20170113467
    Abstract: A liquid container including: a liquid container part; a liquid injection part; an air introduction part; and a buffer part that is in communication with the liquid container part via a first communication path, and in communication with the air introduction part via a second communication path. the buffer part, when the liquid container is in a second orientation that is rotated from the first orientation by 180°, is configured to store the liquid having a volume that is equal to or larger than a volume of the liquid in the liquid container part such that a surface of the liquid is located below a second opening end of the first communication path in the buffer part and a third opening end of the second communication path in the buffer part.
    Type: Application
    Filed: October 18, 2016
    Publication date: April 27, 2017
    Inventors: Takanori MATSUDA, Shoma KUDO, Munehide KANAYA
  • Publication number: 20170107155
    Abstract: A barium titanate piezoelectric ceramic having good piezoelectric properties and mechanical strength and a piezoelectric element that includes the ceramic are provided. A method for making a piezoelectric ceramic includes forming a compact composed of an oxide powder containing barium titanate particles, sintering the compact, and decreasing the temperature of the compact after the sintering. The sintering includes (A) increasing the temperature of the compact to a first temperature within a temperature range of a shrinking process of the compact; (B) increasing the temperature of the compact to a second temperature within a temperature range of a liquid phase sintering process of the compact after (A); (C) decreasing the temperature of the compact to a third temperature within the temperature range of the shrinking process of the compact after (B); and (D) retaining the third temperature after (C).
    Type: Application
    Filed: December 30, 2016
    Publication date: April 20, 2017
    Inventors: Takanori Matsuda, Hiroshi Saito, Tatsuo Furuta, Jumpei Hayashi, Takayuki Watanabe, Toshihiro Ifuku
  • Publication number: 20170101345
    Abstract: Provided is a lead-free piezoelectric ceramics having enhanced mechanical quality factor (Qm) and mechanical strength. The piezoelectric ceramics, includes at least a first crystal grain and a second crystal grain. The first crystal grain has an average equivalent circle diameter of 2 ?m or more and 30 ?m or less. The first crystal grain includes a perovskite-type metal oxide represented by the following general formula (1) as a main component, and the second crystal grain includes a perovskite-type metal oxide represented by the following general formula (2) as a main component: (1) xBaTiO3-yCaTiO3-zCaZrO3; and (2) x?BaTiO3-y?CaTiO3-z?CaZrO3, provided that x, y, z, x?, y?, and z? satisfy x+y+z=1, x?+y?+z?=1, 0?x??0.15, 0.85?y??1, 0?z??0.05, x>x?, 0<y<y?, and z>0.
    Type: Application
    Filed: July 1, 2016
    Publication date: April 13, 2017
    Inventors: Mikio Shimada, Toshiaki Aiba, Toshihiro Ifuku, Takanori Matsuda, Makoto Kubota, Tatsuo Furuta, Jumpei Hayashi
  • Patent number: 9614140
    Abstract: A barium titanate piezoelectric ceramic having good piezoelectric properties and mechanical strength and a piezoelectric element that includes the ceramic are provided. A method for making a piezoelectric ceramic includes forming a compact containing barium titanate particles, sintering the compact, and decreasing the temperature of the compact. The sintering includes (A) increasing the temperature of the compact to a temperature range of a shrinking process of the compact; (B) increasing the temperature of the compact to a temperature range of a liquid phase sintering process of the compact; (C) decreasing the temperature of the compact to the temperature range of the shrinking process of the compact; and (D) retaining the third temperature.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 4, 2017
    Assignee: Canon kabushiki Kaisha
    Inventors: Takanori Matsuda, Hiroshi Saito, Tatsuo Furuta, Jumpei Hayashi, Takayuki Watanabe, Toshihiro Ifuku
  • Patent number: 9595658
    Abstract: A piezoelectric material that does not use lead and potassium and has a high piezoelectric constant and good insulating properties and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains a perovskite-type metal oxide represented by general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (1) (where 0.80?x?0.95 and 0.85?y?0.95), and an auxiliary component containing at least one selected from the group consisting of Si and B. A content of the auxiliary component on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less relative to 100 parts by weight of the perovskite-type metal oxide.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: March 14, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Takayuki Watanabe, Shunsuke Murakami, Miki Ueda
  • Patent number: 9537081
    Abstract: To provide a lead-free piezoelectric material having a high and stable piezoelectric constant in a wide operating temperature range. The piezoelectric material contains a perovskite type metal oxide having the general formula (1), Mn, Mg, (Ba1-xCax)a(Ti1-y-zSnyZrz)O3??(1) (wherein x is in the range of 0.050?x?0.200, y is in the range of 0.010?y?0.040, and z is in the range of 0?z?0.040, provided that x?0.375(y+z)+0.050, and a is in the range of 0.9925+b?a?1.0025+b) wherein the amount b (mol) of Mn on a metal basis per mole of the metal oxide is in the range of 0.0048?b?0.0400, and the Mg content on a metal basis per 100 parts by weight of the metal oxide is 0.100 parts by weight or less.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 3, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kanako Oshima, Hiroshi Saito, Tatsuo Furuta, Takanori Matsuda, Shunsuke Murakami
  • Patent number: 9515249
    Abstract: A lead-free piezoelectric material that has stable, excellent piezoelectric constant and mechanical quality factor in a wide operating temperature range is provided. A piezoelectric material include a perovskite-type metal oxide represented by (Ba1-xCax)a(Ti1-yZry)O3 (where 1.00?a?1.01, 0.155?x?0.300, 0.041?y?0.069) as a main component, and manganese incorporated in the perovskite-type metal oxide. The manganese content relative to 100 parts by weight of the perovskite-type metal oxide is 0.12 parts by weight or more and 0.40 parts by weight or less on a metal basis.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: December 6, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Tatsuo Furuta, Yasushi Shimizu, Takanori Matsuda, Hiroshi Saito, Makoto Kubota
  • Publication number: 20160347075
    Abstract: With a conventional liquid container, it is difficult to reduce the possibility of soiling with liquid caused by liquid leakage. Provided is a liquid container including a liquid containing portion containing liquid, a liquid inlet portion receiving injection of the liquid into the liquid containing portion, an open air port that communicates with the liquid containing portion and is introducing the atmospheric air into the liquid containing portion, and a liquid absorbent material that is arranged at least in a portion of the periphery of the open air port and that is absorbing the liquid.
    Type: Application
    Filed: May 26, 2016
    Publication date: December 1, 2016
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Takanori MATSUDA, Shoma KUDO, Hidenao SUZUKI, Naomi KIMURA, Munehide KANAYA
  • Publication number: 20160289689
    Abstract: To provide a transformation method for producing a stramenopile organism having an improved unsaturated fatty acid production capability by disrupting a gene of the stramenopile organism or inhibiting the expression of the gene in a genetically engineering manner. [Solution] A method for transforming a stramenopile organism, which comprises disrupting a gene of the stramenopile organism or inhibiting the expression of the gene in a genetically engineering manner, and which is characterized in that the stramenopile organism is selected from Thraustochytrium aureum, Parietichytrium sarkarianum, Thraustochytrium roseum and Parietichytrium sp. and the gene to be disrupted or of which the expression is to be inhibited is a gene associated with the biosynthesis of a fatty acid.
    Type: Application
    Filed: May 13, 2015
    Publication date: October 6, 2016
    Applicants: KYUSHU UNIVERSITY, NAT'L UNIVERSITY CORPORATION, UNIVERSITY OF MIYAZAKI, KONAN GAKUEN, NIPPON SUISAN KAISHA, LTD.
    Inventors: Keishi Sakaguchi, Rie Hamaguchi, Takanori Matsuda, Makoto Ito, Naoki Nagano, Masahiro Hayashi, Daisuke Honda, Yuji Okita, Shinichi Sugimoto