Patents by Inventor Takayuki Tsutsui

Takayuki Tsutsui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9954504
    Abstract: A power amplification module includes a first input terminal that receives a first transmit signal in a first frequency band, a second input terminal that receives a second transmit signal in a second frequency band having a narrower transmit/receive frequency interval than the first frequency band, a first amplification circuit that receives and amplifies the first transmit signal to produce a first amplified signal and outputs the first amplified signal, a second amplification circuit that receives and amplifies the second transmit signal to produce a second amplified signal and outputs the second amplified signal, a third amplification circuit that receives and amplifies the first or second amplified signal to produce an output signal and outputs the output signal, and an attenuation circuit located between the second input terminal and the second amplification circuit and configured to attenuate a receive frequency band component of the second frequency band.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 24, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yasushi Oyama, Takayuki Tsutsui, Kazuhito Nakai
  • Patent number: 9955435
    Abstract: A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 24, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Satoshi Tanaka, Kiichiro Takenaka, Takayuki Tsutsui, Taizo Yamawaki, Shun Imai
  • Publication number: 20180102742
    Abstract: Provided is a current output circuit that includes: a first FET that has a power supply voltage supplied to a source thereof, that has a first voltage supplied to a gate thereof and that outputs a first current from a drain thereof; a second FET that has the power supply voltage supplied to a source thereof, that has the first voltage supplied to a gate thereof and that outputs an output current from a drain thereof; a first control circuit that controls the first voltage such that the first current comes to be at a target level; and a second control circuit that performs control such that a drain voltage of the first FET and a drain voltage of the second FET are made equal to each other.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Inventors: Yusuke SHIMAMUNE, Satoshi TANAKA, Takayuki TSUTSUI, Hayato NAKAMURA, Kazuhito NAKAI, Fuminori MORISAWA
  • Publication number: 20180102801
    Abstract: A power amplification module includes a first input terminal arranged to receive a first transmission signal in a first frequency band, a second input terminal arranged to receive a second transmission signal in a second frequency band higher than the first frequency band, a first amplification circuit that amplifies the first transmission signal, a second amplification circuit that amplifies the second transmission signal, a first filter circuit located between the first input terminal and the first amplification circuit, and a second filter circuit located between the second input terminal and the second amplification circuit. The first filter circuit is a low-pass filter that allows the first frequency band to pass therethrough and that attenuates a harmonic of the first transmission signal and the second transmission signal. The second filter circuit is a high-pass filter that allows the second frequency band to pass therethrough and that attenuates the first transmission signal.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 12, 2018
    Inventors: Takayuki TSUTSUI, Satoshi TANAKA, Hidenori OBIYA
  • Publication number: 20180083583
    Abstract: Provided is a power amplification module that supports a plurality of communication systems. The power amplification module includes: two power amplifiers that can be selectively connected in parallel with each other; a switch that, in accordance with one communication system selected from among the plurality of communication systems, selects one power amplifier that is to operate by itself from among the two power amplifiers or selects the two power amplifiers and connects the two power amplifiers in parallel with each other; and a phase correction circuit that, when the two power amplifiers are both selected, corrects a phase difference by being selectively connected between the outputs of the two selected power amplifiers such that a phase difference is not generated between the output signals of the two selected power amplifiers.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 22, 2018
    Inventors: Takayuki TSUTSUI, Fumio HARIMA
  • Patent number: 9923533
    Abstract: In a power amplifier module for performing slope control of a transmitting signal, a gain variation due to a variation in battery voltage is suppressed while suppressing an increase in circuit size. The power amplifier module includes: a first regulator for outputting a first voltage corresponding to a control voltage for controlling a signal level; a second regulator for outputting a second voltage that rises as a battery voltage drops; a first amplifier supplied with the first voltage as a power-supply voltage to amplify an input signal and output an amplified signal; and a second amplifier for amplifying the amplified signal, wherein the second amplifier includes a first amplification unit supplied with the second voltage as the power-supply voltage to amplify the amplified signal, and a second amplification unit supplied with the battery voltage as the power-supply voltage to amplify the amplified signal.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: March 20, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takayuki Tsutsui, Tadashi Matsuoka, Satoshi Tanaka
  • Patent number: 9918289
    Abstract: Provided is a communication unit that includes first and second power-amplification modules, which can be integrated. The first power-amplification module includes a first power-amplifier for a first frequency band in a first communication scheme, a second power-amplifier for a second frequency band in the first communication scheme, a third power-amplifier for a third frequency band in a second communication scheme, a fourth power-amplifier for a fourth frequency band in the second communication scheme, a first bias circuit that generates a first bias current to the first and second power-amplifiers, and a bias current circuit that converts the first bias current into a second bias current to the third and fourth power-amplifiers. The second power-amplification module includes a fifth power-amplifier for a fifth frequency band in the first communication scheme, and a second bias circuit that generates a third bias current to the fifth power-amplifier.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: March 13, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Satoshi Tanaka, Takayuki Tsutsui, Yusuke Tanaka, Hayato Nakamura, Kazuhito Nakai
  • Patent number: 9882533
    Abstract: Provided is a current output circuit that includes: a first FET that has a power supply voltage supplied to a source thereof, that has a first voltage supplied to a gate thereof and that outputs a first current from a drain thereof; a second FET that has the power supply voltage supplied to a source thereof, that has the first voltage supplied to a gate thereof and that outputs an output current from a drain thereof; a first control circuit that controls the first voltage such that the first current comes to be at a target level; and a second control circuit that performs control such that a drain voltage of the first FET and a drain voltage of the second FET are made equal to each other.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: January 30, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yusuke Shimamune, Satoshi Tanaka, Takayuki Tsutsui, Hayato Nakamura, Kazuhito Nakai, Fuminori Morisawa
  • Publication number: 20180027503
    Abstract: A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 25, 2018
    Inventors: Satoshi Tanaka, Kiichiro Takenaka, Takayuki Tsutsui, Taizo Yamawaki, Shun Imai
  • Publication number: 20180019713
    Abstract: A power amplification module includes: a first transistor that amplifies a first radio frequency signal and outputs a second radio frequency signal; a second transistor that amplifies the second radio frequency signal and outputs a third radio frequency signal; and first and second bias circuits that supply first and second bias currents to bases of the first and second transistors. The first bias circuit includes a third transistor that outputs the first bias current from its emitter or source, a capacitor that is input with the first radio frequency signal and connected to the base of the first transistor, a first resistor connected between the emitter or source of the third transistor and the base of the first transistor, a second resistor connected between the capacitor and the emitter or source of the third transistor, and a third resistor connected between the capacitor and the base of the first transistor.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Kazuo WATANABE, Satoshi TANAKA, Kazuhito NAKAI, Takayuki TSUTSUI
  • Patent number: 9871541
    Abstract: A power amplification module includes a first input terminal arranged to receive a first transmission signal in a first frequency band, a second input terminal arranged to receive a second transmission signal in a second frequency band higher than the first frequency band, a first amplification circuit that amplifies the first transmission signal, a second amplification circuit that amplifies the second transmission signal, a first filter circuit located between the first input terminal and the first amplification circuit, and a second filter circuit located between the second input terminal and the second amplification circuit. The first filter circuit is a low-pass filter that allows the first frequency band to pass therethrough and that attenuates a harmonic of the first transmission signal and the second transmission signal. The second filter circuit is a high-pass filter that allows the second frequency band to pass therethrough and that attenuates the first transmission signal.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 16, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takayuki Tsutsui, Satoshi Tanaka, Hidenori Obiya
  • Publication number: 20170359038
    Abstract: A power amplifier circuit includes first and second transistors and a first voltage output circuit. A radio frequency signal is input into a base of the first transistor. The first voltage output circuit outputs a first voltage in accordance with a power supply voltage. The first voltage is supplied to a base or a gate of the second transistor. An emitter or a source of the second transistor is connected to a collector of the first transistor. A first amplified signal generated by amplifying the radio frequency signal is output from a collector or a drain of the second transistor.
    Type: Application
    Filed: May 22, 2017
    Publication date: December 14, 2017
    Inventors: Satoshi TANAKA, Kazuo WATANABE, Takayuki TSUTSUI, Masao KONDO, Satoshi ARAYASHIKI, Fumio HARIMA, Masatoshi HASE
  • Patent number: 9825594
    Abstract: A power amplification module includes: a first transistor that amplifies a first radio frequency signal and outputs a second radio frequency signal; a second transistor that amplifies the second radio frequency signal and outputs a third radio frequency signal; and first and second bias circuits that supply first and second bias currents to bases of the first and second transistors. The first bias circuit includes a third transistor that outputs the first bias current from its emitter or source, a capacitor that is input with the first radio frequency signal and connected to the base of the first transistor, a first resistor connected between the emitter or source of the third transistor and the base of the first transistor, a second resistor connected between the capacitor and the emitter or source of the third transistor, and a third resistor connected between the capacitor and the base of the first transistor.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: November 21, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kazuo Watanabe, Satoshi Tanaka, Kazuhito Nakai, Takayuki Tsutsui
  • Patent number: 9807703
    Abstract: A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: October 31, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Satoshi Tanaka, Kiichiro Takenaka, Takayuki Tsutsui, Taizo Yamawaki, Shun Imai
  • Publication number: 20170257832
    Abstract: A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
    Type: Application
    Filed: May 18, 2017
    Publication date: September 7, 2017
    Inventors: Satoshi Tanaka, Kiichiro Takenaka, Takayuki Tsutsui, Taizo Yamawaki, Shun Imai
  • Publication number: 20170244373
    Abstract: In a power amplifier module for performing slope control of a transmitting signal, a gain variation due to a variation in battery voltage is suppressed while suppressing an increase in circuit size. The power amplifier module includes: a first regulator for outputting a first voltage corresponding to a control voltage for controlling a signal level; a second regulator for outputting a second voltage that rises as a battery voltage drops; a first amplifier supplied with the first voltage as a power-supply voltage to amplify an input signal and output an amplified signal; and a second amplifier for amplifying the amplified signal, wherein the second amplifier includes a first amplification unit supplied with the second voltage as the power-supply voltage to amplify the amplified signal, and a second amplification unit supplied with the battery voltage as the power-supply voltage to amplify the amplified signal.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Takayuki TSUTSUI, Tadashi MATSUOKA, Satoshi TANAKA
  • Publication number: 20170187402
    Abstract: A power amplification module includes a first input terminal arranged to receive a first transmission signal in a first frequency band, a second input terminal arranged to receive a second transmission signal in a second frequency band higher than the first frequency band, a first amplification circuit that amplifies the first transmission signal, a second amplification circuit that amplifies the second transmission signal, a first filter circuit located between the first input terminal and the first amplification circuit, and a second filter circuit located between the second input terminal and the second amplification circuit. The first filter circuit is a low-pass filter that allows the first frequency band to pass therethrough and that attenuates a harmonic of the first transmission signal and the second transmission signal. The second filter circuit is a high-pass filter that allows the second frequency band to pass therethrough and that attenuates the first transmission signal.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Inventors: Takayuki TSUTSUI, Satoshi TANAKA, Hidenori OBIYA
  • Patent number: 9693320
    Abstract: A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 27, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Satoshi Tanaka, Kiichiro Takenaka, Takayuki Tsutsui, Taizo Yamawaki, Shun Imai
  • Publication number: 20170181108
    Abstract: Provided is a communication unit that includes first and second power-amplification modules, which can be integrated. The first power-amplification module includes a first power-amplifier for a first frequency band in a first communication scheme, a second power-amplifier for a second frequency band in the first communication scheme, a third power-amplifier for a third frequency band in a second communication scheme, a fourth power-amplifier for a fourth frequency band in the second communication scheme, a first bias circuit that generates a first bias current to the first and second power-amplifiers, and a bias current circuit that converts the first bias current into a second bias current to the third and fourth power-amplifiers. The second power-amplification module includes a fifth power-amplifier for a fifth frequency band in the first communication scheme, and a second bias circuit that generates a third bias current to the fifth power-amplifier.
    Type: Application
    Filed: March 7, 2017
    Publication date: June 22, 2017
    Inventors: Satoshi TANAKA, Takayuki TSUTSUI, Yusuke TANAKA, Hayato NAKAMURA, Kazuhito NAKAI
  • Patent number: D794992
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: August 22, 2017
    Assignees: FUJI ELECTRIC CO., LTD., SEVEN-ELEVEN JAPAN CO., LTD.
    Inventor: Takayuki Tsutsui