Patents by Inventor Tao Tong

Tao Tong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10008482
    Abstract: Light emitting assemblies comprise a plurality of Light Emitting Diode (LED) dies arranged and attached to common substrate to form an LED array having a desired optimum packing density. The LED dies are wired to one another and are attached to landing pads on the substrate for receiving power from an external electrical source via an interconnect device. The assembly comprises a lens structure, wherein each LED die comprises an optical lens disposed thereover that is configured to promote optimal light transmission. Each optical lens has a diameter that is between about 1.5 to 3 times the size of a respective LED die, and is shaped in the form of a hemisphere. Fillet segments are integral with and interposed between the adjacent optical lenses, and provide sufficient space between adjacent optical lenses so that the diameters of adjacent optical lenses do not intersect with one another.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: June 26, 2018
    Assignee: Bridgelux, Inc.
    Inventors: Wenhui Zhang, Tao Tong, Zhengqing Gan
  • Patent number: 9985004
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: May 29, 2018
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Publication number: 20180120907
    Abstract: An example printed circuit board assembly (PCBA) includes a controller and a plurality of conductive contacts. The conductive contacts are coupled to the controller. The controller is to determine a type of chassis to which the PCBA is mounted.
    Type: Application
    Filed: May 28, 2015
    Publication date: May 3, 2018
    Inventors: Szu Tao Tong, Hsin-Tso Lin, Cheng-Yi Yang, Hai-Ling Hung, Chien-Hao Lu
  • Patent number: 9960329
    Abstract: Methods and apparatus are provided to improve long-term reliability of LED packages using reflective opaque die attach (DA) material. In one novel aspect, a protected area surrounding edges of the LED is determined. The DA is applied to the determined protected area by a dispense process, a stamping process, or a screen printing process, such that the effect of temperature degradation is reduced. A heat distribution model is used to determine the protected area, which is between edges of the LED and a predefined isothermal line where the temperature is 1/e that of the temperature at edges of the LED. In another embodiment, the protected area is further based on a spreading ratio of the substrate size to the LED size. In another novel aspect, with multiple LEDs in the LED package, the spreading ratio is further based on pitch distances to the immediate adjacent LEDs and the substrate boundary.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 1, 2018
    Assignee: Luminus, Inc.
    Inventors: Qifeng Shan, Hongtao Ma, Tao Tong
  • Publication number: 20180094799
    Abstract: An LED assembly includes two strings of surface mounted LED devices mounted to a central ceramic plug portion of a PCB substrate. One string has a CCT of 4000 degrees Kelvin. The other has a CCT of 1800 degrees Kelvin. For each LED device in one string there is a corresponding LED device in the other string. The LED devices of each pair are closely spaced with 0.2-0.6 mm between them. A Highly Reflective (HR) layer is disposed on the substrate between the LED devices. The HR layer has a thickness in a range of from 20 to 50 percent H, where H is the height of an LED die. A transparent silicone layer covers the LED devices. A resistor of a warm-dimming circuit is mounted over the ceramic portion of the substrate whereas an integrated circuit portion of the circuit is mounted over the PCB portion of the substrate.
    Type: Application
    Filed: October 3, 2016
    Publication date: April 5, 2018
    Inventors: Qifeng Shan, Tao Tong, Daniel Than
  • Publication number: 20180069472
    Abstract: A switched capacitor converter and a method for configuring the switched capacitor converter are disclosed. The switched capacitor converter includes a capacitance resource with a cathode and an anode and a switching matrix with a first terminal, a second terminal, a third terminal, and at least one switch configured to switch among two or more connections selected from the group consisting of a connection of the first terminal to the anode and the second terminal to the cathode and a connection of the second terminal to the anode and the third terminal to the cathode.
    Type: Application
    Filed: March 25, 2016
    Publication date: March 8, 2018
    Inventors: Gu-Yeon Wei, Tao Tong, David Brooks, Saekyu Lee
  • Patent number: 9897276
    Abstract: A lighting device comprising a solid-state light source, and a diffuser configured for color mixing of the light from the solid-state light source and spatially separated therefrom, the diffuser comprising at least one phosphor material. Methods of fabricating a lighting device having a reduced total amount of phosphor comprising combining an amount of phosphor with a diffuser structure.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: February 20, 2018
    Assignee: Cree, Inc.
    Inventors: Antony P. Van De Ven, Christopher Hussell, Ronan P. Letoquin, Zongjie Yuan, Tao Tong, Peter Guschl
  • Patent number: 9893039
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: February 13, 2018
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Publication number: 20180019668
    Abstract: A device and method for hybrid feedback control of a switch-capacitor multi-unit voltage regulator are presented. A multi-unit switched-capacitor (SC) core includes a plurality of SC converter units, each unit with a capacitor and a plurality of switches controllable by a plurality of switching signals. Power switch drivers provide a switching signal to each SC converter unit. A secondary proactive loop circuit includes a feedback control circuit configured to control one or more of the plurality of switches. A comparator is configured to compare the regulator output voltage with a reference voltage and provide a comparator trigger signal. Ripple reduction logic is configured to receive the comparator trigger signal and provide an SC unit allocation signal. A multiplexer is configured to receive a first clock signal, a second clock signal, and the SC unit allocation signal and provide a signal to the power switch drivers.
    Type: Application
    Filed: February 26, 2016
    Publication date: January 18, 2018
    Inventors: Gu-Yeon Wei, Tao Tong, David Brooks, Saekyu Lee
  • Patent number: 9865783
    Abstract: A light-emitting diode (LED) assembly includes an aluminum substrate, a silver layer, a distributed Bragg reflector (DBR) and an LED device. The aluminum substrate has a top surface whose length and width are each more than once centimeter. The silver layer is disposed over the entire top surface of the aluminum substrate. The DBR is disposed over the entire upper surface of the silver layer. The DBR includes an upper reflector layer and a lower reflector layer. The lower reflector layer contacts the upper surface of the silver layer. The Led device is attached to the upper reflector layer of the DBR, but the LED device is not disposed over the entire upper reflector layer. In one embodiment, the silver layer is deposited on the substrate using physical vapor deposition. In another embodiment, multiple pairs of lower reflector and higher reflector layers are included.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: January 9, 2018
    Assignee: Luminus, Inc.
    Inventor: Tao Tong
  • Publication number: 20170338209
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 23, 2017
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Publication number: 20170244008
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Application
    Filed: March 8, 2017
    Publication date: August 24, 2017
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Publication number: 20170221865
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 3, 2017
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Patent number: 9653437
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 16, 2017
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Patent number: 9627436
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 18, 2017
    Assignee: BRIDGELUX, INC.
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Patent number: 9625105
    Abstract: Solid state lamp or bulb structures are disclosed that can provide an essentially omnidirectional emission pattern from directional emitting light sources, such as forward emitting light sources. The present invention is also directed to lamp structures using active elements to assist in thermal management of the lamp structures and in some embodiments to reduce the convective thermal resistance around certain of the lamp elements to increase the natural heat convection away from the lamp. Some embodiments include integral fans or other active elements that move air over the surfaces of a heat sink, while other embodiments comprise internal fans or other active elements that can draw air internal to the lamp. The fan's movement of the air over these surfaces can agitate otherwise stagnant air to decrease the convective thermal resistance and increasing the ability of the lamp to dissipate heat generated during operation.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: April 18, 2017
    Assignee: CREE, INC.
    Inventors: Tao Tong, Mark Youmans, Yejin He
  • Patent number: 9595645
    Abstract: An LED device with improved angular color performance has a silicone lens shaped as a portion of a sphere. The lens is molded over an array of LED dies disposed on the upper surface of a substrate. Phosphor particles are disbursed throughout the material used to mold the lens. The distance between farthest-apart edges of the LED dies is more than half of the length that the lens extends over the surface of the substrate. The distance from the top of the lens dome to the surface of the substrate is between 57% and 73% of the radius of the sphere. Shaping the lens as the top two thirds of a hemisphere reduces the non-uniformity in the emitted color such that neither of the CIE color coordinates x or y of the color changes more than 0.004 over all emission angles relative to the surface of the substrate.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: March 14, 2017
    Assignee: Bridgelux, Inc.
    Inventors: Tao Tong, Wenhui Zhang, R. Scott West
  • Publication number: 20170060210
    Abstract: An example disclosed herein is a non-volatile storage medium including instructions relating to control of power that, when executed by a processor, cause the processor to monitor a supply of power to a regulator, decouple supply of power to the regulator when the monitored supply of power is below a predetermined level, couple a power pack to the regulator to supply power to the regulator when the monitored supply of power is below the predetermined level, and generate an Advanced Configuration and Power Interface (ACPI) G1 Sleeping state signal when the monitored supply of power is below the predetermined level.
    Type: Application
    Filed: April 29, 2014
    Publication date: March 2, 2017
    Inventors: Patrick Ferguson, Chien-Hao Lu, Chih Liang Li, Szu Tao Tong
  • Patent number: 9500325
    Abstract: An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 22, 2016
    Assignee: CREE, INC.
    Inventors: Tao Tong, Ronan Letoquin, Bernd Keller, Eric Tarsa
  • Publication number: 20160247984
    Abstract: Methods and apparatus are provided for LED packages with surface textures. In one novel aspect, microstructures are formed on surfaces of the LED package such that light extract efficiency is improved. In one embodiment, the LED package has a silicone-encapsulating layer scattered with phosphors. In another embodiment, the LED package has a leadframe substrate. The microstructure can be micro lens, micro dents, micro pillars, micro cones, or other shapes. The microstructures can be periodically arranged or randomly arranged. In one novel aspect, the compression molding process is used to form rough surfaces. The molding block or the release film is modified with microstructures. In another novel aspect, sandblasting process is used. In one embodiment, microstructures are formed on sidewalls using the sandblasting process. The hardness, the angle, and/or the size of the blasting media are selected to improve the efficiency of the LED package.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 25, 2016
    Inventors: Saijin Liu, Hongtao Ma, Tao Tong