Patents by Inventor Tatsuya Honda

Tatsuya Honda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170110590
    Abstract: An object is to provide a structure of a transistor which has a channel formation region formed using an oxide semiconductor and a positive threshold voltage value, which enables a so-called normally-on switching element. The transistor includes an oxide semiconductor stack in which at least a first oxide semiconductor layer and a second oxide semiconductor layer with different energy gaps are stacked and a region containing oxygen in excess of its stoichiometric composition ratio is provided.
    Type: Application
    Filed: December 27, 2016
    Publication date: April 20, 2017
    Inventors: Shunpei YAMAZAKI, Tatsuya HONDA
  • Patent number: 9620623
    Abstract: When a semiconductor device including a transistor in which a gate electrode layer, a gate insulating film, and an oxide semiconductor film are stacked and a source and drain electrode layers are provided in contact with the oxide semiconductor film is manufactured, after the formation of the gate electrode layer or the source and drain electrode layers by an etching step, a step of removing a residue remaining by the etching step and existing on a surface of the gate electrode layer or a surface of the oxide semiconductor film and in the vicinity of the surface is performed. The surface density of the residue on the surface of the oxide semiconductor film or the gate electrode layer can be 1×1013 atoms/cm2 or lower.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: April 11, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiko Hayakawa, Tatsuya Honda
  • Patent number: 9601636
    Abstract: One object of the present invention is to provide a structure of a transistor including an oxide semiconductor in a channel formation region in which the threshold voltage of electric characteristics of the transistor can be positive, which is a so-called normally-off switching element, and a manufacturing method thereof. A second oxide semiconductor layer which has greater electron affinity and a smaller energy gap than a first oxide semiconductor layer is formed over the first oxide semiconductor layer. Further, a third oxide semiconductor layer is formed to cover side surfaces and a top surface of the second oxide semiconductor layer, that is, the third oxide semiconductor layer covers the second oxide semiconductor layer.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: March 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tatsuya Honda
  • Patent number: 9548397
    Abstract: An object is to provide a structure of a transistor which has a channel formation region formed using an oxide semiconductor and a positive threshold voltage value, which enables a so-called normally-on switching element. The transistor includes an oxide semiconductor stack in which at least a first oxide semiconductor layer and a second oxide semiconductor layer with different energy gaps are stacked and a region containing oxygen in excess of its stoichiometric composition ratio is provided.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 17, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tatsuya Honda
  • Patent number: 9530893
    Abstract: The field of an oxide semiconductor has been attracted attention in recent years. Therefore, the correlation between electric characteristics of a transistor including an oxide semiconductor layer and physical properties of the oxide semiconductor layer has not been clear yet. Thus, a first object is to improve electric characteristics of the transistor by control of physical properties of the oxide semiconductor layer. A semiconductor device including at least a gate electrode, an oxide semiconductor layer, and a gate insulating layer sandwiched between the gate electrode and the oxide semiconductor layer, where the oxide semiconductor layer has the relative permittivity of equal to or higher than 13 (or equal to or higher than 14), is provided.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: December 27, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akiharu Miyanaga, Tatsuya Honda
  • Patent number: 9530895
    Abstract: To suppress a decrease in on-state current in a semiconductor device including an oxide semiconductor. A semiconductor device includes an insulating film containing silicon, an oxide semiconductor film over the insulating film, a gate insulating film containing silicon over the oxide semiconductor film, a gate electrode which is over the gate insulating film and overlaps with at least the oxide semiconductor film, and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In the semiconductor device, the oxide semiconductor film which overlaps with at least the gate electrode includes a region in which a concentration of silicon distributed from an interface with the insulating film is lower than or equal to 1.1 at. %. In addition, a concentration of silicon contained in a remaining portion of the oxide semiconductor film except the region is lower than the concentration of silicon contained in the region.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: December 27, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Takashi Shimazu
  • Publication number: 20160329255
    Abstract: The field of an oxide semiconductor has been attracted attention in recent years. Therefore, the correlation between electric characteristics of a transistor including an oxide semiconductor layer and physical properties of the oxide semiconductor layer has not been clear yet. Thus, a first object is to improve electric characteristics of the transistor by control of physical properties of the oxide semiconductor layer. A semiconductor device including at least a gate electrode, an oxide semiconductor layer, and a gate insulating layer sandwiched between the gate electrode and the oxide semiconductor layer, where the oxide semiconductor layer has the relative permittivity of equal to or higher than 13 (or equal to or higher than 14), is provided.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Akiharu MIYANAGA, Tatsuya HONDA
  • Patent number: 9490351
    Abstract: An object is to provide a highly reliable semiconductor device having stable electric characteristics by using an oxide semiconductor film having stable electric characteristics. Another object is to provide a semiconductor device having higher mobility by using an oxide semiconductor film having high crystallinity. A crystalline oxide semiconductor film is formed over and in contact with an insulating film whose surface roughness is reduced, whereby the oxide semiconductor film can have stable electric characteristics. Accordingly, the highly reliable semiconductor device having stable electric characteristics can be provided. Further, the semiconductor device having higher mobility can be provided.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 8, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Honda, Takatsugu Omata, Yusuke Nonaka
  • Patent number: 9461180
    Abstract: The concentration of impurity elements included in an oxide semiconductor film in the vicinity of a gate insulating film is reduced. Further, crystallinity of the oxide semiconductor film in the vicinity of the gate insulating film is improved. A semiconductor device includes an oxide semiconductor film over a substrate, a source electrode and a drain electrode over the oxide semiconductor film, a gate insulating film which includes an oxide containing silicon and is formed over the oxide semiconductor film, and a gate electrode over the gate insulating film. The oxide semiconductor film includes a region in which the concentration of silicon is lower than or equal to 1.0 at. %, and at least the region includes a crystal portion.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: October 4, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Takashi Shimazu, Shunpei Yamazaki
  • Publication number: 20160284861
    Abstract: An object is to provide a material suitably used for a semiconductor included in a transistor, a diode, or the like. Another object is to provide a semiconductor device including a transistor in which the condition of an electron state at an interface between an oxide semiconductor film and a gate insulating film in contact with the oxide semiconductor film is favorable. Further, another object is to manufacture a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. A semiconductor device is formed using an oxide material which includes crystal with c-axis alignment, which has a triangular or hexagonal atomic arrangement when seen from the direction of a surface or an interface and rotates around the c-axis.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA, Tatsuya HONDA
  • Publication number: 20160244483
    Abstract: A process for producing porous cellulose beads of the present invention is characterized by comprising the steps of a) mixing an alkali aqueous solution and cellulose to prepare cellulose micro dispersion at low temperature, b) adding water to the cellulose micro dispersion to prepare cellulose slurry, and d) bringing the cellulose slurry into contact with coagulation solvent. A carrier for ligand immobilization of the present invention is characterized by being by shrinking polysaccharide porous beads not less than 10% by a shrinkage rate defined by the following formula, and crosslinking the polysaccharide porous beads: Shrinkage rate (%)=(1?V2/V1)×100 (wherein, V1 indicates the gel volume of polysaccharide porous beads before shrinkage, and V2 indicates the gel volume of polysaccharide porous beads after shrinkage).
    Type: Application
    Filed: September 26, 2014
    Publication date: August 25, 2016
    Applicant: KANEKA CORPORATION
    Inventors: Takahiro OKUBO, Yoshikazu KAWAI, Masaru HIRANO, Fuminori KONOIKE, Keiichi KARASUGI, Tatsuya HONDA
  • Publication number: 20160240694
    Abstract: An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm?1 and less than or equal to 0.7 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm?1 and less than or equal to 4.1 nm?1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm?1 and less than or equal to 1.4 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm?1 and less than or equal to 7.1 nm?1.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Kengo AKIMOTO, Hiroki OHARA, Tatsuya HONDA, Takatsugu OMATA, Yusuke NONAKA, Masahiro TAKAHASHI, Akiharu MIYANAGA
  • Publication number: 20160190332
    Abstract: An oxide semiconductor film is formed over a substrate, a film of a semiconductor other than an oxide semiconductor is formed over the oxide semiconductor film, and then an oxygen atom in the oxide semiconductor film and an atom in the film of a semiconductor are bonded to each other at an interface between the oxide semiconductor film and the film of a semiconductor. Accordingly, the interface can be made continuous. Further, oxygen released from the oxide semiconductor film is diffused into the film of a semiconductor, so that the film of a semiconductor can be oxidized to form an insulating film. The use of the gate insulating film thus formed leads to a reduction in interface scattering of electrons at the interface between the oxide semiconductor film and the gate insulating film; so that a transistor with excellent electric characteristics can be manufactured.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 30, 2016
    Inventor: Tatsuya HONDA
  • Publication number: 20160190333
    Abstract: One object of the present invention is to provide a structure of a transistor including an oxide semiconductor in a channel formation region in which the threshold voltage of electric characteristics of the transistor can be positive, which is a so-called normally-off switching element, and a manufacturing method thereof. A second oxide semiconductor layer which has greater electron affinity and a smaller energy gap than a first oxide semiconductor layer is formed over the first oxide semiconductor layer. Further, a third oxide semiconductor layer is formed to cover side surfaces and a top surface of the second oxide semiconductor layer, that is, the third oxide semiconductor layer covers the second oxide semiconductor layer.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 30, 2016
    Inventors: Shunpei YAMAZAKI, Tatsuya HONDA
  • Patent number: 9368633
    Abstract: An object is to provide a material suitably used for a semiconductor included in a transistor, a diode, or the like. Another object is to provide a semiconductor device including a transistor in which the condition of an electron state at an interface between an oxide semiconductor film and a gate insulating film in contact with the oxide semiconductor film is favorable. Further, another object is to manufacture a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. A semiconductor device is formed using an oxide material which includes crystal with c-axis alignment, which has a triangular or hexagonal atomic arrangement when seen from the direction of a surface or an interface and rotates around the c-axis.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: June 14, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Motoki Nakashima, Tatsuya Honda
  • Patent number: 9331208
    Abstract: An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm?1 and less than or equal to 0.7 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm?1 and less than or equal to 4.1 nm?1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm?1 and less than or equal to 1.4 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm?1 and less than or equal to 7.1 nm?1.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: May 3, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Kengo Akimoto, Hiroki Ohara, Tatsuya Honda, Takatsugu Omata, Yusuke Nonaka, Masahiro Takahashi, Akiharu Miyanaga
  • Patent number: 9312393
    Abstract: An object is to obtain a semiconductor device with improved characteristics by reducing contact resistance of a semiconductor film with electrodes or wirings, and improving coverage of the semiconductor film and the electrodes or wirings. The present invention relates to a semiconductor device including a gate electrode over a substrate, a gate insulating film over the gate electrode, a first source or drain electrode over the gate insulating film, an island-shaped semiconductor film over the first source or drain electrode, and a second source or drain electrode over the island-shaped semiconductor film and the first source or drain electrode. Further, the second source or drain electrode is in contact with the first source or drain electrode, and the island-shaped semiconductor film is sandwiched between the first source or drain electrode and the second source or drain electrode. Moreover, the present invention relates to a manufacturing method of the semiconductor device.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: April 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tatsuya Honda
  • Patent number: 9287409
    Abstract: One object of the present invention is to provide a structure of a transistor including an oxide semiconductor in a channel formation region in which the threshold voltage of electric characteristics of the transistor can be positive, which is a so-called normally-off switching element, and a manufacturing method thereof. A second oxide semiconductor layer which has greater electron affinity and a smaller energy gap than a first oxide semiconductor layer is formed over the first oxide semiconductor layer. Further, a third oxide semiconductor layer is formed to cover side surfaces and a top surface of the second oxide semiconductor layer, that is, the third oxide semiconductor layer covers the second oxide semiconductor layer.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 15, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tatsuya Honda
  • Publication number: 20160056299
    Abstract: A decrease in on-state current in a semiconductor device including an oxide semiconductor film is suppressed. A transistor including an oxide semiconductor film, an insulating film which includes oxygen and silicon, a gate electrode adjacent to the oxide semiconductor film, the oxide semiconductor film provided to be in contact with the insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the interface with the insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region.
    Type: Application
    Filed: November 3, 2015
    Publication date: February 25, 2016
    Inventors: Tatsuya HONDA, Masashi TSUBUKU, Yusuke NONAKA, Takashi SHIMAZU, Shunpei YAMAZAKI
  • Patent number: 9240489
    Abstract: An object is to provide a material suitably used for a semiconductor included in a transistor, a diode, or the like. Another object is to provide a semiconductor device including a transistor in which the condition of an electron state at an interface between an oxide semiconductor film and a gate insulating film in contact with the oxide semiconductor film is favorable. Further, another object is to manufacture a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. A semiconductor device is formed using an oxide material which includes crystal with c-axis alignment, which has a triangular or hexagonal atomic arrangement when seen from the direction of a surface or an interface and rotates around the c-axis.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: January 19, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Motoki Nakashima, Tatsuya Honda