Patents by Inventor Te-Li Lau

Te-Li Lau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6272579
    Abstract: A system and method for transferring data in a multiprocessor architecture capable of supporting multiple processors. The system comprises a priority assignor that provides a dynamic priority to input/output unit (IOU), D-cache and I-cache devices requests as a function of an intrinsic priority assigned to each device and a plurality of factors including the existence of a row match between a requested address and a previously serviced request, the number of times a device has been denied service and the number of times a device has been serviced without interruption. The system also includes a tracker to keep track of the number of times each of the factors occurs and a priority changer to change the priority of the devices as a function of the intrinsic priority and the number.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: August 7, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 6256720
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: July 3, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6219763
    Abstract: A system for transferring data in a microprocessor architecture including a memory array unit (MAU) and multiple devices seeking access to the MAU. The system has a row match circuit for detecting and indicating a row match between successive row addresses. The row match circuit include a latch for storing a previous row address request, and a comparator for comparing a previously latched row address request with a present row address request associated with a specific device of the multiple devices seeking access to the MAU. The comparator asserts a row match signal when the previously latched row address request matches the present row address request. The system further includes an arbiter for controlling priorities associated with the multiple devices seeking access to the MAU.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: April 17, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 6128723
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: October 3, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6101594
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: August 8, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6092181
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: July 18, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6038653
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: March 14, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6038654
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: March 14, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5961629
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: October 5, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5941979
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors comprising a memory array unit (MAU), an MAU system bus comprising data, address and control signal buses, an I/O bus comprising data, address and control signal buses, a plurality of I/O devices and a plurality of microprocessors. Data transfers between data and instruction caches and I/O devices and a memory and other I/O devices are handled using a switch network port data and instruction cache and I/O interface circuits. Access to the memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: August 24, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5832292
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: November 3, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5768445
    Abstract: This relates to a general purpose circuit that maximizes the computing power of a Unix workstation or other computer system for processing image or other data in accordance with a selected one or ones of several alternative compression and decompression algorithms. This dynamically allocates system memory for storage of both compressed and uncompressed data and ensures adequate compression and decompression rates.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: June 16, 1998
    Assignee: Silicon Graphics, Inc.
    Inventors: Mark W. Troeller, Michael L. Fuccio, Henry P. Moreton, Bent Hagemark, Te-Li Lau
  • Patent number: 5754800
    Abstract: A computer system comprising a multiprocessor architecture capable of supporting multiple processors comprising a memory array unit (MAU), an MAU system bus comprising data, address and control signal buses, an I/O bus comprising data, address and control signal buses, a plurality of I/O devices and a plurality of microprocessors. Data transfers between data and instruction caches and I/O devices and a memory and other I/O devices are handled using a switch network and interface circuits. Access to the memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A row match comparison circuit is provided for reducing memory latency by giving an increased priority to successive requests for access to memory locations having the same row address.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: May 19, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5689720
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches and stores program instruction sets. Each instruction set includes a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instruction sets and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers which are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: November 18, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5604865
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors. Data transfers between data and instruction caches, I/O devices, and a memory are handled using a switch network. Access to memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A test and set bypass circuit is provided for preventing a loss of memory bandwidth due to spin-locking. A row match comparison circuit is provided for reducing memory latency by giving an increased priority to successive requests for access to memory locations having the same row address. Dynamic switch/port arbitration is provided by changing device priority based on the intrinsic priority of the device, the number of times that a request has been serviced based on a row match, the number of times that a device has been denied service, and the number of times that a device has been serviced.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 18, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5564117
    Abstract: A VLSIC page printer controller includes an instruction processor which responds to a host computer and a printer video processor for accessing data from memory under the control of the instruction processor and serializing data for transfer to a printer through a video port. An I/O interface interconnects the printer controller with an I/O bus to which is connected a host computer, memory devices, and other peripheral devices. An internal memory interface connects the printer controller to memory, and the printer video processor is provided with direct memory access (DMA). Data and instruction caches and an instruction ROM are provided on-chip. A RISC instruction processing unit includes as an integral part thereof the special function, circuits of orthogonal rotator, bit/byte mirror, and pixel modification.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: October 8, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Johannes Wang, Trevor Deosaran, Linley M. Young, Kian-Chin Yap, Le T. Nguyen, Makoto Matsubayashi, Te-Li Lau
  • Patent number: 5560032
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution and concurrent results distribution for enhanced resource utilization and performance throughput. The computer system architecture includes an instruction fetch unit for fetching program instruction sets. Each instruction set includes a plurality of fixed length instructions with a prescribed program order (in-order). The architecture also includes an instruction execution unit for dynamically examining the instruction sets and scheduling instructions for execution, including out-of-order execution, among a plurality of functional units. The data results of the executed instructions are concurrently distributed to a temporary buffer and a register file array and managed by associated control logic, including a register renaming unit, a dependency checker unit, done control unit, and retirement control unit.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: September 24, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5559951
    Abstract: A VLSIC page printer controller includes an instruction processor which responds to a host computer and a printer video processor for accessing data from memory under the control of the instruction processor and serializing data for transfer to a printer through a video port. An I/0 interface interconnects the printer controller with an I/O bus to which is connected a host computer, memory devices, and other peripheral devices. An internal memory interface connects the printer controller to memory, and the printer video processor is provided with direct memory access (DMA). Data and instruction caches and an instruction ROM are provided on-chip. A RISC instruction processing unit includes as an integral part thereof the special function circuits of orthogonal rotator, bit/byte mirror, and pixel modification.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: September 24, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Johannes Wang, Trevor Deosaran, Linley M. Young, Kian-Chin Yap, Le Trong Nguyen, Makoto Matsubayashi, Te-Li Lau
  • Patent number: 5539911
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches and stores program instruction sets. Each instruction set includes a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instruction sets and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers which are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: January 8, 1992
    Date of Patent: July 23, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Le T. Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5440752
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors. Data transfers between data and instruction caches, I/O devices, and a memory am handled using a switch network. Access to memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A test and set bypass circuit is provided for preventing a loss of memory bandwidth due to spin-locking. A row match comparison circuit is provided for reducing memory latency by giving an increased priority to successive requests for access to memory locations having the same row address. Dynamic switch/port arbitration is provided by changing device priority based on the intrinsic priority of the device, the number of times that a request has been serviced based on a row match, the number of times that a device has been denied service, and the number of times that a device has been serviced.
    Type: Grant
    Filed: July 8, 1991
    Date of Patent: August 8, 1995
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen