Patents by Inventor Teng-Chun Tsai

Teng-Chun Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230077541
    Abstract: A method includes removing a dummy gate stack to form an opening between gate spacers, selectively forming an inhibitor film on sidewalls of the gate spacers, with the sidewalls of the gate spacers facing the opening, and selectively forming a dielectric layer over a surface of a semiconductor region. The inhibitor film inhibits growth of the dielectric layer on the inhibitor film. The method further includes removing the inhibitor film, and forming a replacement gate electrode in a remaining portion of the opening.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 16, 2023
    Inventors: Yasutoshi Okuno, Fu-Ting Yen, Teng-Chun Tsai, Ziwei Fang
  • Publication number: 20230058800
    Abstract: The method includes receiving a semiconductor device having a first surface and a second surface. The first surface is a top surface including a conductive material exposed thereon; and the second surface is an embedded surface including the conductive material and a dielectric material. The method also includes selecting a first polishing slurry to achieve a first polishing rate of the conductive material in the first polishing slurry and a second polishing rate of the dielectric material in the first polishing slurry. The method further includes selecting a second polishing slurry to achieve a third polishing rate of the conductive material in the second polishing slurry and a fourth polishing rate of the dielectric material in the second polishing slurry. The method additionally includes polishing the first surface with the first polishing slurry until the second surface is exposed; and polishing the second surface with the second polishing slurry.
    Type: Application
    Filed: November 7, 2022
    Publication date: February 23, 2023
    Inventors: An-Hsuan Lee, Chun-Hung Liao, Chen-Hao Wu, Shen-Nan Lee, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 11557483
    Abstract: A method includes forming a gate structure and an interlayer dielectric (ILD) layer over a substrate; selectively forming an inhibitor over the gate structure; performing an atomic layer deposition (ALD) process to form a dielectric layer over the ILD layer, wherein in the ALD process the dielectric layer has greater growing rate on the ILD than on the inhibitor; and performing an atomic layer etching (ALE) process to etch the dielectric layer until a top surface of the inhibitor is exposed, in which a portion of the dielectric layer remains on the ILD layer after the ALE process is complete.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wei Su, Fu-Ting Yen, Ting-Ting Chen, Teng-Chun Tsai
  • Patent number: 11545400
    Abstract: A method includes forming a gate stack, which includes a gate dielectric and a metal gate electrode over the gate dielectric. An inter-layer dielectric is formed on opposite sides of the gate stack. The gate stack and the inter-layer dielectric are planarized. The method further includes forming an inhibitor film on the gate stack, with at least a portion of the inter-layer dielectric exposed, selectively depositing a dielectric hard mask on the inter-layer dielectric, with the inhibitor film preventing the dielectric hard mask from being formed thereon, and etching to remove a portion of the gate stack, with the dielectric hard mask acting as a portion of a corresponding etching mask.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsu-Hsiu Perng, Kai-Chieh Yang, Zhi-Chang Lin, Teng-Chun Tsai, Wei-Hao Wu
  • Patent number: 11529712
    Abstract: An apparatus for performing chemical mechanical polish on a wafer includes a polishing head that includes a retaining ring. The polishing head is configured to hold the wafer in the retaining ring. The retaining ring includes a first ring having a first hardness, and a second ring encircled by the first ring, wherein the second ring has a second hardness smaller than the first hardness.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-Chien Hou, Ching-Hong Jiang, Kuo-Yin Lin, Ming-Shiuan She, Shen-Nan Lee, Teng-Chun Tsai, Yung-Cheng Lu
  • Patent number: 11525072
    Abstract: A chemical mechanical polishing (CMP) slurry composition includes an oxidant including oxygen, and an abrasive particle having a core structure encapsulated by a shell structure. The core structure includes a first compound and the shell structure includes a second compound different from the first compound, where a diameter of the core structure is greater than a thickness of the shell structure, and where the first compound is configured to react with the oxidant to form a reactive oxygen species.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Hsuan Lee, Shen-Nan Lee, Chen-Hao Wu, Chun-Hung Liao, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 11508583
    Abstract: A method includes removing a dummy gate stack to form an opening between gate spacers, selectively forming an inhibitor film on sidewalls of the gate spacers, with the sidewalls of the gate spacers facing the opening, and selectively forming a dielectric layer over a surface of a semiconductor region. The inhibitor film inhibits growth of the dielectric layer on the inhibitor film. The method further includes removing the inhibitor film, and forming a replacement gate electrode in a remaining portion of the opening.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yasutoshi Okuno, Teng-Chun Tsai, Ziwei Fang, Fu-Ting Yen
  • Publication number: 20220362906
    Abstract: A method includes measuring a first thickness at a first location of the polishing pad and a second thickness at a second location of the polishing pad; obtaining a first reference thickness at the first location of the polishing pad, wherein the first reference thickness is an average thickness of multiple thicknesses at the first location; obtaining a second reference thickness at the second location of the polishing pad, wherein the second reference thickness is an average thickness of multiple thicknesses at the second location; calculating a first thickness difference; calculating a second thickness difference; modifying a conditioning parameter value at the first location of the polishing pad; and sweeping a conditioner across a surface of the polishing pad; and applying a downforce or a sweeping speed to the conditioner that urges the conditioner against the first location of the polishing pad according to the modified conditioning parameter value.
    Type: Application
    Filed: July 17, 2022
    Publication date: November 17, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shen-Nan LEE, Te-Chien HOU, Teng-Chun TSAI, Chung-Wei HSU, Chen-Hao WU
  • Publication number: 20220359202
    Abstract: A method includes forming a metal layer over a substrate; forming a dielectric layer over the metal layer; performing a plasma treatment to a first portion of the dielectric layer, such that a carbon concentration of the first portion of the dielectric layer is lower than a carbon concentration of a second portion of the dielectric layer; selectively forming an inhibitor over the first portion of the dielectric layer; and selectively forming a hard mask over portions of the metal layer that is uncovered by the inhibitor.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wei SU, Fu-Ting YEN, Teng-Chun TSAI
  • Patent number: 11495471
    Abstract: A semiconductor substrate has an exposed surface having a compositionally uniform metal, and an embedded surface having the metal and an oxide. The exposed surface is polished using a first slurry including a first abrasive and a first amine-based alkaline until the embedded surface is exposed. The embedded surface is polished using a second slurry including a second abrasive and a second amine-based alkaline. The second abrasive is different from the first abrasive. The second amine-based alkaline is different from the first amine-based alkaline. The metal and the oxide each has a first and a second removal rate in the first slurry, respectively, and a third and fourth removal rate in the second slurry, respectively. A ratio of the first removal rate to the second removal rate is greater than 30:1, and a ratio of the third removal rate to the fourth removal rate is about 1:0.5 to about 1:2.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: November 8, 2022
    Inventors: An-Hsuan Lee, Chun-Hung Liao, Chen-Hao Wu, Shen-Nan Lee, Teng-Chun Tsai, Huang-Lin Chao
  • Publication number: 20220344199
    Abstract: Examples of a technique for forming a dielectric material for an integrated circuit are provided herein. In an example, an integrated circuit workpiece is received that includes a recess. A first dielectric precursor is deposited in the recess. The first dielectric precursor includes a non-semiconductor component. A second dielectric precursor is deposited in the recess on the first dielectric precursor, and an annealing process is performed such that a portion of the non-semiconductor component of the first dielectric precursor diffuses into the second dielectric precursor. The non-semiconductor component may include oxygen, and the annealing process may be performed in one of a vacuum or an inert gas environment.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Inventors: Chih-Tang Peng, Shuen-Shin Liang, Keng-Chu Lin, Teng-Chun Tsai
  • Patent number: 11444028
    Abstract: A semiconductor device and methods of formation are provided. A semiconductor device includes an annealed cobalt plug over a silicide in a first opening of the semiconductor device, wherein the annealed cobalt plug has a repaired lattice structure. The annealed cobalt plug is formed by annealing a cobalt plug at a first temperature for a first duration, while exposing the cobalt plug to a first gas. The repaired lattice structure of the annealed cobalt plug is more regular or homogenized as compared to a cobalt plug that is not so annealed, such that the annealed cobalt plug has a relatively increased conductivity or reduced resistivity.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY Ltd.
    Inventors: Hong-Mao Lee, Huicheng Chang, Chia-Han Lai, Chi-Hsuan Ni, Cheng-Tung Lin, Huang-Yi Huang, Chi-Yuan Chen, Li-Ting Wang, Teng-Chun Tsai, Wei-Jung Lin
  • Patent number: 11398381
    Abstract: A method includes forming a metal layer over a substrate; forming a dielectric layer over the metal layer; removing a first portion of the dielectric layer to expose a first portion of the metal layer, while a second portion of the dielectric layer remains on the metal layer; selectively forming a first inhibitor on the second portion of the dielectric layer, while the metal layer is free of coverage by the first inhibitor; and selectively depositing a first hard mask on the exposed first portion of the metal layer, while the first inhibitor is free of coverage by the first hard mask.
    Type: Grant
    Filed: August 8, 2020
    Date of Patent: July 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wei Su, Fu-Ting Yen, Teng-Chun Tsai
  • Patent number: 11389928
    Abstract: A method is provided and includes: measuring a surface profile of a polishing pad; obtaining a reference profile of the polishing pad; comparing the surface profile of the polishing pad with the reference profile to generate a difference result; determining a conditioning parameter value according to the difference result; and conditioning the polishing pad using the conditioning parameter value.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shen-Nan Lee, Te-Chien Hou, Teng-Chun Tsai, Chung-Wei Hsu, Chen-Hao Wu
  • Patent number: 11387138
    Abstract: Examples of a technique for forming a dielectric material for an integrated circuit are provided herein. In an example, an integrated circuit workpiece is received that includes a recess. A first dielectric precursor is deposited in the recess. The first dielectric precursor includes a non-semiconductor component. A second dielectric precursor is deposited in the recess on the first dielectric precursor, and an annealing process is performed such that a portion of the non-semiconductor component of the first dielectric precursor diffuses into the second dielectric precursor. The non-semiconductor component may include oxygen, and the annealing process may be performed in one of a vacuum or an inert gas environment.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Tang Peng, Shuen-Shin Liang, Keng-Chu Lin, Teng-Chun Tsai
  • Publication number: 20220195246
    Abstract: A CMP slurry composition and a method of polishing a metal layer are provided. In some embodiments, the CMP slurry composition includes about 0.1 to 10 parts by weight of a metal oxide, and about 0.1 to 10 parts by weight of a chelator. The chelator includes a thiol compound or a thiolether compound.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 23, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hung Liao, An-Hsuan Lee, Shen-Nan Lee, Teng-Chun Tsai, Chen-Hao Wu, Huang-Lin Chao
  • Publication number: 20220190137
    Abstract: The present disclosure describes an inner spacer structure for a semiconductor device and a method for forming the same. The method for forming the inner spacer structure in the semiconductor device can include forming a vertical structure over a substrate, forming a gate structure over a portion of the vertical structure, exposing sidewalls of the portion of the vertical structure, forming multiple spacers over the sidewalls of the portion of the vertical structure, and forming a void in each of the multiple spacers.
    Type: Application
    Filed: February 28, 2022
    Publication date: June 16, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Han Wang, Ding-Kang Shih, Chun-Hsiung Lin, Teng-Chun Tsai, Zhi-Chang Lin, Akira Mineji, Yao-Sheng Huang
  • Patent number: 11312882
    Abstract: A slurry solution for a Chemical Mechanical Polishing (CMP) process includes a wetting agent, a stripper additive that comprises at least one of: N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, and dimethylformamide (DMF), and an oxidizer additive comprising at least one of: hydrogen peroxide (H2O2), ammonium persulfate ((NH4)2S2O8), peroxymonosulfuric acid (H2SO5), ozone (O3) in de-ionized water, and sulfuric acid (H2SO4).
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Patent number: 11267987
    Abstract: A CMP slurry composition and a method of polishing a metal layer are provided. In some embodiments, the CMP slurry composition includes about 0.1 to 10 parts by weight of a metal oxide, and about 0.1 to 10 parts by weight of a chelator. The chelator includes a thiol compound or a thiolether compound.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hung Liao, An-Hsuan Lee, Shen-Nan Lee, Teng-Chun Tsai, Chen-Hao Wu, Huang-Lin Chao
  • Patent number: 11264485
    Abstract: The present disclosure describes an inner spacer structure for a semiconductor device and a method for forming the same. The method for forming the inner spacer structure in the semiconductor device can include forming a vertical structure over a substrate, forming a gate structure over a portion of the vertical structure, exposing sidewalls of the portion of the vertical structure, forming multiple spacers over the sidewalls of the portion of the vertical structure, and forming a void in each of the multiple spacers.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: March 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Han Wang, Ding-Kang Shih, Chun-Hsiung Lin, Teng-Chun Tsai, Zhi-Chang Lin, Akira Mineji, Yao-Sheng Huang