Patents by Inventor Teodor K. Todorov

Teodor K. Todorov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10092487
    Abstract: Zinc oxide compositions as well as techniques for plasmonic enhancement of absorption in sunscreen applications are provided herein. A method includes selecting one or more metal particles to be used in conjunction with one or more zinc oxide particles in a sunscreen composition, wherein said selecting is based on the plasmon resonance frequency associated with each of the metal particles; and embedding the one or more selected metal particles into each of the one or more zinc oxide particles.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Yun Seog Lee, Ning Li, Devendra Sadana, Teodor K. Todorov
  • Patent number: 10096738
    Abstract: Techniques for precisely controlling the composition of volatile components (such as sulfur (S), selenium (Se), and tin (Sn)) of chalcogenide semiconductors in real-time—during production of the material are provided. In one aspect, a method for forming a chalcogenide semiconductor material includes providing a S source(s) and a Se source(s); heating the S source(s) to form a S-containing vapor; heating the Se source(s) to form a Se-containing vapor; passing a carrier gas first through the S-containing vapor and then through the Se-containing vapor, wherein the S-containing vapor and the Se-containing vapor are transported via the carrier gas to a sample; and contacting the S-containing vapor and the Se-containing vapor with the sample under conditions sufficient to form the chalcogenide semiconductor material. A multi-chamber processing apparatus is also provided.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Sunit S. Mahajan, Teodor K. Todorov
  • Patent number: 10076475
    Abstract: Shell-structured particles for sunscreen applications are provided herein. A method includes selecting one or more particles to serve as a core material in a sunscreen composition, wherein each of the one or more particles comprises a band gap within a predetermined range, and wherein said selecting is based on a desired absorption spectrum of the sunscreen composition; coating the one or more particles with at least one layer of zinc oxide. A composition includes selecting one or more particles to serve as a coating layer in a sunscreen composition, wherein each of the one or more particles comprises a band gap within a predetermined range, and wherein said selecting is based on a desired absorption spectrum of the sunscreen composition; and coating one or more zinc oxide particles with the one or more selected particles.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Yun Seog Lee, Ning Li, Devendra Sadana, Teodor K. Todorov
  • Publication number: 20180261711
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: JEEHWAN KIM, DAVID B. MITZI, BYUNGHA SHIN, TEODOR K. TODOROV, MARK T. WINKLER
  • Publication number: 20180261710
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: JEEHWAN KIM, DAVID B. MITZI, BYUNGHA SHIN, TEODOR K. TODOROV, MARK T. WINKLER
  • Publication number: 20180233622
    Abstract: Selenium-fullerene heterojunction solar cells and techniques for fabrication thereof are provided. In one aspect, a method of forming a solar cell includes: forming a front contact on a substrate; depositing an n-type semiconducting layer on the front contact, wherein the n-type semiconducting layer comprises a fullerene or fullerene derivative; forming a p-type chalcogen absorber layer on the n-type semiconducting layer; depositing a high workfunction material onto the p-type chalcogen absorber layer, wherein the high workfunction material has a workfunction of greater than about 5.2 electron volts; and forming a back contact on the high workfunction material. Solar cells and other methods for formation thereof are also provided.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Douglas M. Bishop, Yun Seog Lee, Saurabh Singh, Teodor K. Todorov
  • Publication number: 20180231804
    Abstract: Techniques for integrating photovoltaics into wearables, such as eyewear, are provided. In one aspect, a method of forming a lens for photovoltaic eyewear includes: forming a semitransparent photovoltaic film on at least a portion of a viewable area of the lens, wherein the semitransparent photovoltaic film includes an inorganic absorber material having a band gap of from about 1.4 eV to about 2.2 eV, and ranges therebetween. The semitransparent photovoltaic film can be configured to block greater than about 99.9% UVA, UVB, and UVC light rays, and from about 95% to about 99%, and ranges therebetween, of HEV light rays from passing therethrough. Photovoltaic eyewear formed by the present techniques is also provided.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Douglas M. Bishop, Saurabh Singh, Teodor K. Todorov
  • Publication number: 20180233609
    Abstract: Semitransparent chalcogen solar cells and techniques for fabrication thereof are provided. In one aspect, a method of forming a solar cell includes: forming a first transparent contact on a substrate; depositing an n-type layer on the first transparent contact; depositing a p-type chalcogen absorber layer on the n-type layer, wherein a p-n junction is formed between the p-type chalcogen absorber layer and the n-type layer; depositing a protective interlayer onto the p-type chalcogen absorber layer, wherein the protective interlayer fully covers the p-type chalcogen absorber layer; and forming a second transparent contact on the interlayer, wherein the interlayer being disposed between the p-type chalcogen absorber layer and the second transparent contact serves to protect the p-n junction during the forming of the second transparent contact. Solar cells and other methods for formation thereof are also provided.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Douglas M. Bishop, Yun Seog Lee, Saurabh Singh, Teodor K. Todorov
  • Patent number: 10045918
    Abstract: Zinc oxide compositions and methods for embedding oxide particles in a separate suspension particle for sunscreen applications are provided herein. A method includes reducing the size of each of multiple zinc oxide particles in accordance with a predetermined range; selecting one or more suspension particles to be utilized in conjunction with the multiple zinc oxide particles in a sunscreen composition, wherein each of the one or more suspension particles is larger in size than each of the multiple zinc oxide particles, and wherein said selecting is based on the refractive index of each of the one or more suspension particles; and embedding the multiple zinc oxide particles into the one or more suspension particles to create the sunscreen composition.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 14, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Yun Seog Lee, Ning Li, Devendra Sadana, Teodor K. Todorov
  • Patent number: 10014423
    Abstract: Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Priscilla D. Antunez, Bruce A. Ek, Richard A. Haight, Ravin Mankad, Saurabh Singh, Teodor K. Todorov
  • Patent number: 10008625
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jeehwan Kim, David B. Mitzi, Byungha Shin, Teodor K. Todorov, Mark T. Winkler
  • Patent number: 9993402
    Abstract: Sunscreen additives for enhancing vitamin D production are provided herein. A method includes selecting phosphor materials to incorporate into zinc oxide particles, wherein the phosphor materials are capable of carrying out an up-conversion process whereby two or more photons absorbed by the zinc oxide particles and/or the phosphor materials within a first wavelength range are emitted as at least one photon within a second wavelength range. The method also includes incorporating the selected phosphor materials into the zinc oxide particles. A composition includes zinc oxide particles suspended within a medium of a sunscreen composition, and phosphor materials incorporated into the zinc oxide particles, wherein the phosphor materials are capable of carrying out an up-conversion process whereby two or more photons absorbed by the zinc oxide particles and/or the phosphor materials within a first wavelength range are emitted as at least one photon within a second wavelength range.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Ning Li, Devendra Sadana, Teodor K. Todorov
  • Patent number: 9997655
    Abstract: A method of preparing a Ag2ZnSn(S,Se)4 compound, including dissolving selenourea (SeC(NH2)2) in an aprotic solvent, and dissolving a silver salt, a zinc salt, and a tin salt in the aprotic solvent with the selenourea to form a metal solution; and coating the metal solution onto a substrate to form an Ag2ZnSn(S,Se)4 compound layer on the substrate.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Richard A. Haight, Saurabh Singh, Teodor K. Todorov
  • Publication number: 20180122969
    Abstract: Kesterite-based photovoltaic devices formed on flexible ceramic substrates are provided. In one aspect, a method of forming a photovoltaic device includes the steps of: forming a back contact on a flexible ceramic substrate; forming a kesterite absorber layer on a side of the back contact opposite the flexible ceramic substrate; annealing the kesterite absorber layer; forming a buffer layer on a side of the kesterite absorber layer opposite the back contact; and forming a transparent front contact on a side of the buffer layer opposite the kesterite absorber layer. A roll-to-roll-based method of forming a photovoltaic device and a photovoltaic device are also provided.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Inventors: John A. Olenick, Teodor K. Todorov
  • Publication number: 20180123066
    Abstract: Techniques for forming a transparent conducting oxide (TCO) top contact using a low temperature process are provided. In one aspect of the invention, a method of forming a TCO on a substrate is provided. The method includes the steps of: generating a source gas of the TCO using e-beam evaporation; generating atomic oxygen using RF plasma; and contacting the substrate with the TCO source gas and the atomic oxygen under conditions sufficient to form the TCO on the substrate. A photovoltaic device is also provided which includes a bottom cell; and a perovskite-based top cell on the kesterite-based bottom cell. The perovskite-based top cell includes a top electrode formed from a TCO.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Inventors: Bruce A. Ek, Talia S. Gershon, Supratik Guha, Oki Gunawan, Teodor K. Todorov
  • Publication number: 20180102455
    Abstract: Silver-containing absorbers for photovoltaic devices and techniques for fabrication thereof are provided. In one aspect, a method of forming an ink includes: mixing a silver halide and a solvent to form a first solution; mixing a metal, sulfur, and the solvent to form a second solution; combining the first solution and the second solution to form a precursor solution; and adding constituent components for an absorber material to the precursor solution to form the ink. Methods of forming an absorber film, a photovoltaic device, and the resulting photovoltaic device are also provided.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 12, 2018
    Inventors: PRISCILLA D. ANTUNEZ, TALIA S. GERSHON, RICHARD A. HAIGHT, TEODOR K. TODOROV
  • Patent number: 9937112
    Abstract: Zinc oxide compositions as well as techniques for doping ZnO particles for sunscreen applications are provided herein. A method includes selecting one or more dopants to be incorporated into one or more zinc oxide particles in a sunscreen composition, wherein the one or more dopants comprise chromium, cobalt, gallium, and/or tin, and wherein said selecting is based on one or more optical properties associated with each of the dopants, and incorporating the selected dopants into the zinc oxide particles to create the sunscreen composition. A composition includes multiple zinc oxide particles suspended within a medium forming sunscreen composition, and one or more dopants incorporated into each of the multiple zinc oxide particles, wherein the one or more dopants comprise chromium, cobalt, gallium, and/or tin, and wherein each of the dopants imparts one or more optical properties to the zinc oxide particle within which the dopant is incorporated.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Ning Li, Devendra Sadana, Teodor K. Todorov
  • Patent number: 9939366
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Publication number: 20180097130
    Abstract: Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Priscilla D. Antunez, Bruce A. Ek, Richard A. Haight, Ravin Mankad, Saurabh Singh, Teodor K. Todorov
  • Publication number: 20180097473
    Abstract: An integrated kesterite (e.g., CZT(S,Se)) photovoltaic device and battery is provided. In one aspect, a method of forming an integrated photovoltaic device and battery includes: forming a photovoltaic device having a substrate, an electrically conductive layer, an absorber layer, a buffer layer, a transparent front contact, and a metal grid; removing the substrate and the electrically conductive layer from the photovoltaic device to expose a backside surface of the absorber layer; forming at least one back contact on the backside surface of the absorber layer; and integrating the photovoltaic device with a battery, wherein the integrating includes connecting i) a positive contact of the battery with the back contact on the backside surface of the absorber layer and ii) a negative contact of the battery with the metal grid on the transparent front contact. An integrated photovoltaic device and battery is also provided.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Priscilla D. Antunez, Richard A. Haight, James B. Hannon, Teodor K. Todorov