Patents by Inventor Terry L. St. Clair

Terry L. St. Clair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7964698
    Abstract: The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 21, 2011
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Theodorus J. Dingemans, Terry L. St. Clair, Jeffrey A. Hinkley
  • Publication number: 20090118461
    Abstract: The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.
    Type: Application
    Filed: November 5, 2007
    Publication date: May 7, 2009
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Theodorus J. Dingemans, Terry L. St. Clair, Jeffrey A. Hinkley
  • Patent number: 7507784
    Abstract: Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 24, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Theodorus J. Dingemans, Erik S. Weiser, Terry L. St. Clair
  • Patent number: 6939940
    Abstract: Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: September 6, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Theodorous J. Dingemans, Erik S. Weiser, Terry L. St. Clair
  • Patent number: 6689288
    Abstract: The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: February 10, 2004
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Joycelyn S. Harrison, Ji Su, Zoubeida Ounaies
  • Publication number: 20030096100
    Abstract: Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.
    Type: Application
    Filed: December 20, 2001
    Publication date: May 22, 2003
    Applicant: National Aeronautics and Space Administration
    Inventors: Patricia R. McDaniel, Terry L. St. Clair
  • Patent number: 6545391
    Abstract: A device for providing an electromechanical response includes two polymeric webs bonded to each other along their lengths. At least one polymeric web is activated upon application thereto of an electric field and exhibits electrostriction by rotation of polar graft moieties within the polymeric web. In one embodiment, one of the two polymeric webs in an active web upon application thereto of the electric field, and the other polymeric web is a non-active web upon application thereto of the electric field. In another embodiment, both of the two polymeric webs are capable of being active webs upon application thereto of the electric field. However, these two polymeric webs are alternately activated and non-activated by the electric field.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: April 8, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ji Su, Joycelyn S. Harrison, Terry L. St. Clair
  • Publication number: 20030052576
    Abstract: The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components.
    Type: Application
    Filed: November 28, 2001
    Publication date: March 20, 2003
    Applicant: Administrator, National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Joycelyn S. Harrison, Ji Su, Zoubeida Ounaies
  • Patent number: 6521052
    Abstract: A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 18, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Sharon E. Lowther, Terry L. St. Clair
  • Patent number: 6515077
    Abstract: An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: February 4, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ji Su, Joycelyn S. Harrison, Terry L. St. Clair
  • Publication number: 20020132933
    Abstract: Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase.
    Type: Application
    Filed: January 5, 2001
    Publication date: September 19, 2002
    Inventors: Theodorous J. Dingemans, Erik S. Weiser, Terry L. St. Clair
  • Patent number: 6379809
    Abstract: A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100° C.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: April 30, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Joycelyn O. Simpson, Terry L. St. Clair
  • Patent number: 6368662
    Abstract: Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: April 9, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patricia R. McDaniel, Terry L. St. Clair
  • Publication number: 20020004102
    Abstract: A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6A1-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups.
    Type: Application
    Filed: February 9, 2001
    Publication date: January 10, 2002
    Inventors: Cheol Park, Sharon E. Lowther, Terry L. St. Clair
  • Patent number: 6235803
    Abstract: A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 &mgr;m, a density of about 1 to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/ft3 and a compression strength of about 100 to about 1400 pounds/in2.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: May 22, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 6222007
    Abstract: High quality films, preimpregnated tape (prepegs) and composites have been fabricated from polyimide precursor “salt-like” solutions. These “salt-like” solutions have a low viscosity (5,000 to 10,000 cp) and a high solids content (50-65% by weight) and can be coated onto reinforcing fiber to produce prepegs with excellent tack and drape at 12-15% residual solvent (˜4-6% water from thermal imidization reaction). The processing of these types of prepegs significantly overcomes solvent removal problems and allows excellent fiber wet out. In addition, the physical characteristics of the polyimide precursor “salt-like” solutions permits processing into high-performance materials through the use of standard prepregging and composite fabrication equipment. The resultant composites are of high quality.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: April 24, 2001
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Roberto J. Cano, Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 6180746
    Abstract: A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or dervative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: January 30, 2001
    Assignees: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Unitika, LTD
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 6133330
    Abstract: A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/ft.sup.3 to about 20 pounds/ft.sup.3 ; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235.degree. C. to about 400.degree. C.; and a thermal stability of 0 to about 1% weight loss at 204.degree. C. as determined by thermogravimetric analysis (TGA).
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: October 17, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 6114156
    Abstract: Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: September 5, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patricia R. McDaniel, Terry L. St. Clair
  • Patent number: 6084000
    Abstract: A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 .mu.m, a density of about 1 to about 6 pounds/ft.sup.3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/ft.sup.3 and a compression strength of about 100 to about 1400 pounds/in.sup.2.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: July 4, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro