Patents by Inventor Terry L. St. Clair

Terry L. St. Clair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6017637
    Abstract: A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: January 25, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Terry L. St. Clair
  • Patent number: 5994418
    Abstract: A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 .mu.m, a density of about 1 to about 6 pounds/ft.sup.3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/ft.sup.3 and a compression strength of about 100 to about 1400 pounds/in.sup.2.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: November 30, 1999
    Assignees: The United States of America as represented by the Administrator of the National Aeronautica and Space Administration, Unitika, Ltd.
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 5909905
    Abstract: A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100.degree. C.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: June 8, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Joycelyn O. Simpson, Terry L. St. Clair
  • Patent number: 5891581
    Abstract: A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100.degree. C.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: April 6, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Joycelyn O. Simpson, Terry L. St. Clair
  • Patent number: 5840828
    Abstract: A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3,4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340.degree. C. to 360.degree. C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: November 24, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Catharine C. Fay, Dennis C. Working
  • Patent number: 5789025
    Abstract: A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: August 4, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Terry L. St. Clair
  • Patent number: 5670256
    Abstract: A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3,4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340.degree. C. to 360.degree. C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: September 23, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Catharine C. Fay, Dennis C. Working
  • Patent number: 5502157
    Abstract: A copolyimide was prepared by reacting 3,4'-oxydianiline (3,4'-ODA) with a dianhydride blend comprising, based on the total amount of the dianhydride blend, about 67 to 80 mole percent of 4,4'-oxydiphthalic anhydride (ODPA) and about 20 to 33 mole percent of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The copolyimide may be endcapped with up to about 10 mole percent of a monofunctional aromatic anhydride and has unbalanced stoichiometry such that a molar deficit in the dianhydride blend is compensated with twice the molar amount of the monofunctional aromatic anhydride. The copolyimide was used to prepare composites, films and adhesives. The film and adhesive properties were significantly better than those of LaRC.TM.-IA.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: March 26, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Alice C. Chang, Terry L. St. Clair
  • Patent number: 5478916
    Abstract: A solvent resistant copolyimide was prepared by reacting 4,4'-oxydiphthalic anhydride with a diaimine blend comprising, based on the total amount of the diamine blend, about 75 to 90 mole percent of 3,4'-oxydianiline and about 10 to 25 mole percent p-phenylene diamine. The solvent resistant copolyimide had a higher glass transition temperature when cured at 350.degree. , 371.degree. and 400.degree. C. than LaRC.TM.-IA. The composite prepared from the copolyimide had similar mechanical properties to LaRC.TM.-IA. Films prepared from the copolyimide were resistant to immediate breakage when exposed to solvents such as dimethylacetamide and chloroform. The adhesive properties of the copolyimide were maintained even after testing at 23.degree., 150.degree., 177.degree. and 204.degree. C.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: December 26, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Alice C. Chang, Terry L. St. Clair
  • Patent number: 5464928
    Abstract: The invention is a direct process for preparing semi-crystalline polyimides. This process comprises the steps of: providing a polar aprotic solvent, adding a dianhydride and a diamine to the solvent to form a mixture, stirring the mixture at ambient temperature, and adding glacial acetic acid to the mixture to provide a ratio of polar aprotic solvent to glacial acetic acid which ranges from about 90 to 10 to about 75 to 25 by volume to form a solution. The solution was heated to a range from about 110.degree. C. to about 140.degree. C. to form a polyimide precipitate. The polyimide precipitate was recovered as a semi-crystalline polyimide powder.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: November 7, 1995
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Alice C. Chang, Terry L. St. Clair
  • Patent number: 5455327
    Abstract: Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepare polyimide polymers. These polymers are used to make films, coatings, and selective membranes.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: October 3, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, J. Richard Pratt
  • Patent number: 5428102
    Abstract: A series of polyimides based on the dianhydride of 1,4-bis(3,4-dicarboxyphenoxy)benzene (HQDEA) or on 2,2-bis[4(3-aminophenoxy)phenyl]hexafluoropropane (3-BDAF) are evolved from high molecular weight polyamic acid solutions yielding flexible free-standing films and coatings in the fully imidized form which have a dielectric constant in the range of 2.5 to 3.1 at 10 GHz.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: June 27, 1995
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Anne K. St. Clair, Terry L. St. Clair, William P. Winfree
  • Patent number: 5338826
    Abstract: A structure which is effective as an electrical insulator or as a transmitter-receiver of electromagnetic energy is prepared by providing a suitable substrate and covering the substrate with an adhering layer of a low dielectric, high temperature, linear aromatic polyimide.
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: August 16, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administation
    Inventors: Anne K. St. Clair, Terry L. St. Clair, William P. Winfree
  • Patent number: 5304627
    Abstract: Novel polyimides containing pendent siloxane groups (PISOX) were prepared by the reaction of functionalized siloxane compounds with hydroxy containing polyimides (PIOH). The pendent siloxane groups on the polyimide backbone offer distinct advantages such as lowering the dielectric constant and moisture resistance and enhanced atomic oxygen resistance. The siloxane containing polyimides are potentially useful as protective silicon oxide coatings and are useful for a variety of applications where atomic oxygen resistance is needed.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: April 19, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Terry L. St. Clair, Paul M. Hergenrother
  • Patent number: 5302692
    Abstract: The diamine, 1,3-diamino-5-pentafluorosulfanylbenzene (DASP), was reacted with various dianhydrides to form polyimides containing an SF.sub.5 moiety. These polyimides exhibit high glass transition temperatures, high density, low solubility, and low dielectric properties. These polymers were used to prepare semi-permeable membranes, wire coatings, and films and are useful for electronic, space and piezoelectric applications.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: April 12, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Adminstration
    Inventors: Anna K. St. Clair, Terry L. St. Clair
  • Patent number: 5272248
    Abstract: A process for preparing polyamides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15% by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: December 21, 1993
    Assignee: The United States of America as Represented by the United States National Aeronautics and Space Administration
    Inventors: J. Richard Pratt, Terry L. St. Clair, Diane M. Stoakley, Harold D. Burks
  • Patent number: 5220070
    Abstract: A process was developed to prepare 1,3-diamino-5-pentafluorosulfanylbenzene. This process involved two steps: preparing the dinitro compound, 1,3-dinitro-5-pentafluorosulfanylbenzene, and reducing this compound to form the corresponding diamine. This diamine was reacted with various dianhydrides, diacidchlorides, and epoxy resins to form polyimides, polyamides, and crosslinked epoxies. These polymers were used to prepare semi-permeable membranes, wire coatings, and films.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: June 15, 1993
    Assignee: The United States of America as represented by the Administrator National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Anne K. St. Clair, Joseph S. Thrasher
  • Patent number: 5218083
    Abstract: High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide, which has the following general structure: ##STR1##
    Type: Grant
    Filed: October 31, 1989
    Date of Patent: June 8, 1993
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Margaret K. Gerber, Terry L. St. Clair, J. Richard Pratt, Anne K. St. Clair
  • Patent number: 5212283
    Abstract: Linear aromatic polyimides containing the cyclobutene-3,4-dione moiety were produced by reacting 1,2-bis(4-aminoanilino)cyclobutene-3,4-dione with several aromatic dianhydrides. The resulting polymers exhibited glass transition temperatures greater than 500.degree. C., adhered tenaciously to glass, and became more flexible after heating for 1 hour at 300.degree. C.
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: May 18, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Terry L. St. Clair
  • Patent number: 5189127
    Abstract: The compound N-(3-ethynylphenyl)maleimide (NEPMI) was used to prepare thermally stable, glassy polyimides which did not exhibit glass transition temperatures below 500.degree. C. NEPMI was blended with the maleimide of methylene dianiline (BMI) and heated to form the polyimide. NEPMI was also mixed with Thermid 600.RTM., a commercially available bisethynyl oligomeric material, and heated to form a thermally stable, glassy polyimide. Lastly, NEPMI was blended with both BMI and Thermid 600.RTM. to form thermally stable, glassy polyimides.
    Type: Grant
    Filed: December 3, 1991
    Date of Patent: February 23, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Margaret K. Gerber, Terry L. St. Clair