Patents by Inventor Teruaki OCHIAI

Teruaki OCHIAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220352510
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Application
    Filed: June 29, 2022
    Publication date: November 3, 2022
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Shuhei YOSHITOMI, Takuya HIROHASHI, Mako MOTOYOSHI, Yohei MOMMA, Junya GOTO
  • Patent number: 11489151
    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain, and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: November 1, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masahiro Takahashi, Teruaki Ochiai, Yohei Momma, Ayae Tsuruta
  • Patent number: 11444274
    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain; and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: September 13, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masahiro Takahashi, Teruaki Ochiai, Yohei Momma, Ayae Tsuruta
  • Publication number: 20220285673
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 8, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA, Masahiro Takahashi, Mayumi MIKAMI
  • Publication number: 20220285681
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Publication number: 20220263089
    Abstract: A positive electrode active material, which has higher capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. The positive electrode active material includes lithium, cobalt, magnesium, oxygen, and fluorine; when a pattern obtained by powder X ray diffraction using a CuK?1 ray is subjected to Rietveld analysis, the positive electrode active material has a crystal structure having a space group R-3m, a lattice constant of an a-axis is greater than 2.814×10(?10th power) m and less than 2.817×10(?10th power) m, and a lattice constant of a c-axis is greater than 14.05×10(?10th power) m and less than 14.07×10(?10th power) m; and in analysis by X-ray photoelectron spectroscopy, a relative value of a magnesium concentration is higher than or equal to 1.6 and lower than or equal to 6.0 with the cobalt concentration regarded as 1.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 18, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jyo SAITOU
  • Publication number: 20220255076
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 11, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Publication number: 20220255084
    Abstract: A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 ?m. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 11, 2022
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Takuya MIWA
  • Publication number: 20220246931
    Abstract: A positive electrode active material, which has higher capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. The positive electrode active material includes lithium, cobalt, magnesium, oxygen, and fluorine; when a pattern obtained by powder X ray diffraction using a CuK?1 ray is subjected to Rietveld analysis, the positive electrode active material has a crystal structure having a space group R-3m, a lattice constant of an a-axis is greater than 2.814×10(?10th power) m and less than 2.817×10(?10th power) m, and a lattice constant of a c-axis is greater than 14.05×10(?10th power) m and less than 14.07×10(?10th power) m; and in analysis by X-ray photoelectron spectroscopy, a relative value of a magnesium concentration is higher than or equal to 1.6 and lower than or equal to 6.0 with the cobalt concentration regarded as 1.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jyo SAITOU
  • Publication number: 20220231341
    Abstract: A lithium-ion secondary battery having high capacity and excellent charge and discharge cycle performance is provided. A secondary battery having high capacity is provided. A secondary battery having excellent charge and discharge performance is provided. A secondary battery in which a decrease in capacity is suppressed even at high temperatures is provided. The secondary battery includes a positive electrode, a negative electrode, an electrolyte solution, and an exterior body. The positive electrode includes a positive electrode active material. The positive electrode active material contains lithium, cobalt, oxygen, magnesium, and fluorine. The number of magnesium atoms contained in the positive electrode active material is greater than or equal to 0.001 times and less than or equal to 0.1 times the number of cobalt atoms contained in the positive electrode active material. The positive electrode active material includes a region having a layered rock-salt crystal structure.
    Type: Application
    Filed: May 26, 2020
    Publication date: July 21, 2022
    Inventors: Kazutaka KURIKI, Yumiko YONEDA, Yohei MOMMA, Teruaki OCHIAI
  • Patent number: 11394025
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: July 19, 2022
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro Kawakami, Teruaki Ochiai, Shuhei Yoshitomi, Takuya Hirohashi, Mako Motoyoshi, Yohei Momma, Junya Goto
  • Publication number: 20220199984
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20220200041
    Abstract: Positive electrode active material particles that inhibit a decrease in capacity due to charge and discharge cycles are provided. A high-capacity secondary battery, a secondary battery with excellent charge and discharge characteristics, or a highly-safe or highly-reliable secondary battery is provided. A novel material, active material particles, and a storage device are provided. The positive electrode active material particle includes a first region and a second region in contact with the outside of the first region. The first region contains lithium, oxygen, and an element M that is one or more elements selected from cobalt, manganese, and nickel. The second region contains the element M, oxygen, magnesium, and fluorine. The atomic ratio of lithium to the element M (Li/M) measured by X-ray photoelectron spectroscopy is 0.5 or more and 0.85 or less. The atomic ratio of magnesium to the element M (Mg/M) is 0.2 or more and 0.5 or less.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 23, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Ayae TSURUTA, Masahiro TAKAHASHI
  • Publication number: 20220199989
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 23, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20220199983
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 23, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA, Masahiro Takahashi, Mayumi MIKAMI
  • Publication number: 20220190319
    Abstract: A positive electrode active material for a lithium-ion secondary battery and with high capacity and excellent charging and discharging cycle performance is provided. The positive electrode active material contains lithium, cobalt, nickel, aluminum, and oxygen, and the spin density attributed to one or more of a divalent nickel ion, a trivalent nickel ion, a divalent cobalt ion, and a tetravalent cobalt ion is within a predetermined range. It is preferable that the positive electrode active material further contain magnesium. An appropriate magnesium concentration is represented by a concentration with respect to cobalt. It is preferable that the positive electrode active material further contain fluorine.
    Type: Application
    Filed: March 19, 2020
    Publication date: June 16, 2022
    Inventors: Kazuhei NARITA, Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI, Jo SAITO
  • Publication number: 20220190332
    Abstract: A method for forming a positive electrode active material of a lithium ion secondary battery is provided. In the method for forming a positive electrode active material, a first container that includes a mixture of lithium oxide, fluoride, and a magnesium compound and fluoride that is outside the first container are provided in a heating furnace, and the heating furnace is heated at a temperature higher than or equal to a temperature at which the fluoride is volatilized or sublimated. It is further preferable that the fluoride be lithium fluoride and the magnesium compound be magnesium fluoride.
    Type: Application
    Filed: March 23, 2020
    Publication date: June 16, 2022
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jo SAITO, Masahiro TAKAHASHI
  • Publication number: 20220190313
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki Ochiai, Takahiro Kawakami, Mayumi Mikami, Yohei Momma, Masahiro Takahashi, Ayae Tsuruta
  • Publication number: 20220185694
    Abstract: A positive electrode active material with high capacity and excellent charge and discharge cycle performance, a positive electrode active material with high productivity, a positive electrode active material that suppresses a decrease in capacity, or the like is provided. Alternatively, a high-capacity secondary battery, a secondary battery with excellent charge and discharge characteristics, a highly safe or reliable secondary battery, or the like is provided. The positive electrode active material is obtained by a first heating step of heating a mixture of a first material, a second material, and a third material and a second heating step of heating a mixture which is a mixture of the mixture, a fourth material, and a fifth material and has a total amount of 15 g or more.
    Type: Application
    Filed: March 25, 2020
    Publication date: June 16, 2022
    Inventors: Yohei MOMMA, Mayumi MIKAMI, Teruaki OCHIAI
  • Publication number: 20220181619
    Abstract: Provided is a positive electrode active material that achieves improvement in load resistance such as rate performance and output resistance when used as a positive electrode active material in a lithium-ion secondary battery, achieves improvement in powder properties, has a short manufacturing cycle time, and is low in cost. The positive electrode active material is manufactured by a first step of forming a first mixture by separately pulverizing a compound containing one or more elements selected from magnesium, calcium, zirconium, lanthanum, and barium; a compound containing halogen and an alkali metal; and a fluoride containing one or more metals selected from nickel, aluminum, manganese, titanium, vanadium, iron, and chromium, and then mixing them with metal oxide powder; and a second step of performing heating at a temperature higher than or equal to 700° C. and lower than or equal to 950° C.
    Type: Application
    Filed: March 30, 2020
    Publication date: June 9, 2022
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Kazuhito MACHIKAWA, Jo SAITO