Patents by Inventor Teruaki OCHIAI

Teruaki OCHIAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210020910
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20210020935
    Abstract: A positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charging and discharging as compared with those of a known positive electrode active material. In order to form the positive electrode active material having the pseudo-spinel crystal structure in the charged state, it is preferable that a halogen source such as a fluorine and a magnesium source be mixed with particles of a composite oxide containing lithium, a transition metal, and oxygen, which is synthesized in advance, and then the mixture be heated at an appropriate temperature for an appropriate time.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 21, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI, Jyo SAITOU
  • Publication number: 20200395604
    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain; and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 17, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA
  • Publication number: 20200373569
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200373568
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200373567
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 26, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200358104
    Abstract: A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 m. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Takuya MIWA
  • Publication number: 20200358091
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200350576
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Shuhei YOSHITOMI, Takuya HIROHASHI, Mako MOTOYOSHI, Yohei MOMMA, Junya GOTO
  • Publication number: 20200343530
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20200343529
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20200328413
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 15, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200328402
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20200313178
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200313177
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200313228
    Abstract: Positive electrode active material particles that inhibit a decrease in capacity due to charge and discharge cycles are provided. A high-capacity secondary battery, a secondary battery with excellent charge and discharge characteristics, or a highly-safe or highly-reliable secondary battery is provided. A novel material, active material particles, and a storage device are provided. The positive electrode active material particle includes a first region and a second region in contact with the outside of the first region. The first region contains lithium, oxygen, and an element M that is one or more elements selected from cobalt, manganese, and nickel. The second region contains the element M, oxygen, magnesium, and fluorine. The atomic ratio of lithium to the element M (Li/M) measured by X-ray photoelectron spectroscopy is 0.5 or more and 0.85 or less. The atomic ratio of magnesium to the element M (Mg/M) is 0.2 or more and 0.5 or less.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Ayae TSURUTA, Masahiro TAKAHASHI
  • Patent number: 10784516
    Abstract: A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 ?m. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: September 22, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruaki Ochiai, Takahiro Kawakami, Takuya Miwa
  • Publication number: 20200295349
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Patent number: 10749174
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 18, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Teruaki Ochiai, Shuhei Yoshitomi, Takuya Hirohashi, Mako Motoyoshi, Yohei Momma, Junya Goto
  • Publication number: 20200259183
    Abstract: In manufacture of a storage battery electrode containing graphene as a conductive additive, the efficiency of reduction of graphene oxide under mild conditions is increased, and cycle characteristics and rate characteristics of a storage battery are improved. Provided is a manufacturing method of a storage battery electrode. In the manufacturing method, a first mixture containing an active material, graphene oxide, and a solvent is formed; a reducing agent is added to the first mixture and the graphene oxide is reduced to form a second mixture; a binder is mixed with the second mixture to form a third mixture; and the third mixture is applied to a current collector and the solvent is evaporated to form an active material layer.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Tatsuya IKENUMA, Takahiro KAWAKAMI, Yohei MOMMA, Teruaki OCHIAI