Patents by Inventor Teruaki OCHIAI

Teruaki OCHIAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220173394
    Abstract: A method for forming a positive electrode active material of a lithium ion secondary battery is provided. The method for forming a positive electrode active material includes a first step of placing a first container in which a mixture of a lithium oxide, a fluoride, and a magnesium compound are put, in a heating furnace, a second step of providing an atmosphere including oxygen in an inside of the heating furnace, and a third step of heating the inside of the heating furnace. The third step is performed after the first step and the second step are performed. Preferably, an atmosphere including oxygen is provided in the heating furnace before the inside of the heating furnace is heated. More preferably, the fluoride is lithium fluoride and the magnesium compound is magnesium fluoride.
    Type: Application
    Filed: March 23, 2020
    Publication date: June 2, 2022
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jo SAITO, Masahiro TAKAHASHI
  • Patent number: 11322746
    Abstract: A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 ?m. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 3, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruaki Ochiai, Takahiro Kawakami, Takuya Miwa
  • Publication number: 20220115637
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20220059830
    Abstract: A positive electrode material for a lithium-ion secondary battery which has high capacity and excellent charge and discharge cycle performance, and a manufacturing method thereof are provided, or a method of manufacturing a positive electrode material with high productivity is provided. The positive electrode material for a lithium-ion secondary battery includes a crystal represented by a crystal structure with a space group R-3m, a first region, and a second region, which is in contact with at least part of an outer side of the first region and whose outer edge corresponds to a surface of the first particle. The ratio of manganese atoms to cobalt atoms in the first region is lower than the ratio of manganese atoms to cobalt atoms in the second region. The ratio of fluorine atoms to oxygen atoms in the first region is lower than the ratio of fluorine atoms to oxygen atoms in the second region.
    Type: Application
    Filed: September 17, 2019
    Publication date: February 24, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jyo SAITO
  • Publication number: 20220052335
    Abstract: A positive electrode active material that has high capacity and excellent charge and discharge cycle performance for a secondary battery is provided. A positive electrode active material that inhibits a decrease in capacity in charge and discharge cycles is provided. A high-capacity secondary battery is provided. A secondary battery with excellent charge and discharge characteristics is provided. A highly safe or reliable secondary battery is provided. A positive electrode active material contains lithium, cobalt, oxygen, and aluminum and has a crystal structure belonging to a space group R-3m when Rietveld analysis is performed on a pattern obtained by powder X-ray diffraction. In analysis by X-ray photoelectron spectroscopy, the number of aluminum atoms is less than or equal to 0.2 times the number of cobalt atoms.
    Type: Application
    Filed: December 4, 2019
    Publication date: February 17, 2022
    Inventors: Jyo SAITO, Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI, Tatsuyoshi TAKAHASHI, Kazuhei NARITA
  • Publication number: 20220029159
    Abstract: An object is to provide a method for manufacturing a positive electrode active material that achieves high powder properties and high load resistance (e.g., rate performance and output resistance) when used in a lithium-ion secondary battery, within a short manufacturing cycle time and at low cost. To perform heat treatment at temperatures lower than the melting point of magnesium fluorine, lithium fluoride is mixed to melt magnesium fluorine and modify the surface of lithium cobalt oxide powder. By mixing lithium fluoride, magnesium fluorine can be melted at a temperature lower than its melting point, and a positive electrode active material is formed utilizing this eutectic phenomenon.
    Type: Application
    Filed: December 2, 2019
    Publication date: January 27, 2022
    Inventors: Yohei MOMMA, Jyo SAITO, Teruaki OCHIAI, Kazuhei NARITA, Kazuhito MACHIKAWA, Mayumi MIKAMI
  • Publication number: 20220020981
    Abstract: A positive electrode active material for a lithium ion secondary battery which has a large capacity and a good charge-and-discharge cycle performance is provided. The positive electrode active material includes lithium, cobalt, oxygen, and magnesium, and has a compound represented by a layered rock-salt crystal structure. A space group of the compound is represented by R-3m. The compound is a composite oxide in which magnesium is substituted for a lithium position and a cobalt position. The compound is a particle. The magnesium substituted for a lithium position and a cobalt position exists more in the region from the surface to 5 nm than in the region deeper than 10 nm from the surface. More magnesium is substituted for a lithium position than for a cobalt position.
    Type: Application
    Filed: November 7, 2019
    Publication date: January 20, 2022
    Inventors: Yohei MOMMA, Mayumi MIKAMI, Teruaki OCHIAI, Kazuhei NARITA, Jyo SAITO
  • Publication number: 20220006082
    Abstract: A positive electrode active material with high capacity and excellent charging and discharging cycle performance for a lithium-ion secondary battery is provided. The positive electrode active material contains lithium, cobalt, and oxygen, and the spin density attributed to a bivalent cobalt ion and a tetravalent cobalt ion is within a predetermined range. It is preferable that the positive electrode active material further contain magnesium. An appropriate magnesium concentration is represented as a concentration with respect to cobalt. It is also preferable that the positive electrode active material further contain fluorine.
    Type: Application
    Filed: November 7, 2019
    Publication date: January 6, 2022
    Inventors: Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI
  • Publication number: 20210320290
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: October 7, 2020
    Publication date: October 14, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20210313571
    Abstract: A positive electrode active material, which has higher capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. The positive electrode active material includes lithium, cobalt, magnesium, oxygen, and fluorine; when a pattern obtained by powder X ray diffraction using a CuK?1 ray is subjected to Rietveld analysis, the positive electrode active material has a crystal structure having a space group R-3m, a lattice constant of an a-axis is greater than 2.814×10(?10th power) m and less than 2.817×10(?10th power) m, and a lattice constant of a c-axis is greater than 14.05×10(?10th power) m and less than 14.07×10(?10th power) m; and in analysis by X-ray photoelectron spectroscopy, a relative value of a magnesium concentration is higher than or equal to 1.6 and lower than or equal to 6.0 with the cobalt concentration regarded as 1.
    Type: Application
    Filed: July 24, 2019
    Publication date: October 7, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jyo SAITOU
  • Publication number: 20210305553
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA, Masahiro Takahashi, Mayumi MIKAMI
  • Publication number: 20210265621
    Abstract: A positive electrode active material, which has a high capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. Alternatively, a positive electrode active material that inhibits a decrease in capacity in charge and discharge cycles when used in a lithium-ion secondary battery is provided. Alternatively, a high-capacity secondary battery is provided. Alternatively, a highly safe or reliable secondary battery is provided. The positive electrode active material contains a first substance including a first crack and a second substance positioned inside the first crack. The first substance contains one or more of cobalt, manganese, and nickel, lithium, oxygen, magnesium, and fluorine. The second substance contains phosphorus and oxygen.
    Type: Application
    Filed: June 11, 2019
    Publication date: August 26, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuhito MACHIKAWA, Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI
  • Patent number: 11094927
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: August 17, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Teruaki Ochiai, Yohei Momma, Ayae Tsuruta, Masahiro Takahashi, Mayumi Mikami
  • Patent number: 11043660
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: June 22, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruaki Ochiai, Takahiro Kawakami, Mayumi Mikami, Yohei Momma, Masahiro Takahashi, Ayae Tsuruta
  • Publication number: 20210167353
    Abstract: In manufacturing a storage battery electrode, a method for manufacturing a storage battery electrode with high capacity and stability is provided. As a method for preventing a mixture for forming an active material layer from becoming strongly basic, a first aqueous solution is formed by mixing an active material exhibiting basicity with an aqueous solution exhibiting acidity and including an oxidized derivative of a first conductive additive; a first mixture is formed by reducing the oxidized derivative of the first conductive additive by drying the first aqueous solution; a second mixture is formed by mixing a second conductive additive and a binder; a third mixture is formed by mixing the first mixture and the second mixture; and a current collector is coated with the third mixture. The strong basicity of the mixture for forming an active material layer is lowered; thus, the binder can be prevented from becoming gelled.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Takahiro KAWAKAMI, Yohei MOMMA, Teruaki OCHIAI, Tatsuya IKENUMA
  • Publication number: 20210143404
    Abstract: A method for manufacturing a lithium-ion secondary battery more safely at a lower cost is provided. A method for manufacturing a positive electrode for a secondary battery includes a step of forming slurry by mixing graphene oxide, a binder, and a positive electrode active material in a solvent containing water; a step of applying the slurry on a positive electrode current collector; and a step of reducing graphene oxide by at least one of chemical reduction and thermal reduction. As a reducing agent for the chemical reduction, ascorbic acid can be used.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 13, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Kazuhei NARITA, Teruaki OCHIAI, Yumiko YONEDA
  • Patent number: 10978710
    Abstract: A power storage device with excellent charge and discharge characteristics. A power storage device in which a decrease in capacity in charge and discharge cycles is inhibited. An electrode which includes a current collector and an active material layer and in which the active material layer includes an active material and a binder and the binder includes polybenzoxazine. An electrode that includes polybenzoxazine and another material as a binder. A basic material may be used as the active material. The electrode may be formed under high temperatures.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: April 13, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruaki Ochiai, Takahiro Kawakami
  • Publication number: 20210083281
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: May 11, 2018
    Publication date: March 18, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Patent number: 10923706
    Abstract: In manufacturing a storage battery electrode, a method for manufacturing a storage battery electrode with high capacity and stability is provided. As a method for preventing a mixture for forming an active material layer from becoming strongly basic, a first aqueous solution is formed by mixing an active material exhibiting basicity with an aqueous solution exhibiting acidity and including an oxidized derivative of a first conductive additive; a first mixture is formed by reducing the oxidized derivative of the first conductive additive by drying the first aqueous solution; a second mixture is formed by mixing a second conductive additive and a binder; a third mixture is formed by mixing the first mixture and the second mixture; and a current collector is coated with the third mixture. The strong basicity of the mixture for forming an active material layer is lowered; thus, the binder can be prevented from becoming gelled.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: February 16, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Yohei Momma, Teruaki Ochiai, Tatsuya Ikenuma
  • Publication number: 20210028456
    Abstract: A positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charging and discharging as compared with those of a known positive electrode active material. In order to form the positive electrode active material having the pseudo-spinel crystal structure in the charged state, it is preferable that a halogen source such as a fluorine and a magnesium source be mixed with particles of a composite oxide containing lithium, a transition metal, and oxygen, which is synthesized in advance, and then the mixture be heated at an appropriate temperature for an appropriate time.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 28, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI, Jyo SAITOU