Patents by Inventor Teruhisa Akashi

Teruhisa Akashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915924
    Abstract: A recess is formed in one silicon substrate. A silicon oxide film is formed in another one silicon substrate at a portion space apart from a space-to-be-formed region. The silicon oxide film has a groove surrounding the space-to-be-formed region and extending to an outer periphery of the other one silicon substrate. Further, the other one silicon substrate and the one silicon substrate are directly bonded to each other via the silicon oxide film so as to cover the groove. A gas discharge passage, a stacking structure of the silicon substrates and the silicon oxide film are formed, and the space is formed inside the stacking structure by the recess. Then, by the heat treatment, the gas inside the space is discharged to the outside of the stacking structure through the gas discharge passage.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 27, 2024
    Assignees: DENSO CORPORATION, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Megumi Suzuki, Yasuo Yamamoto, Teruhisa Akashi
  • Patent number: 11852482
    Abstract: A controller applies a predetermined voltage to a fixed part detection excitation electrode to vibrate a movable part in a second direction and simultaneously applies a predetermined voltage to a fixed part drive electrode to vibrate the movable part in a first direction. The controller acquires, of the movable part, a first resonance frequency along the first direction and a second resonance frequency along the second direction. The controller controls a drive spring adjustment part to adjust a spring constant of the drive spring, such that the first resonance frequency is maintained constant, and controls a detection spring adjustment part to adjust a spring constant of the detection spring such that the second resonance frequency is maintained constant. The controller detects the angular velocity based on a result of synchronously detecting signal from the fixed part detection electrode with the first resonance frequency.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: December 26, 2023
    Assignee: DENSO CORPORATION
    Inventors: Katsuaki Goto, Shota Harada, Takashi Katsumata, Yoshiyuki Hata, Teruhisa Akashi
  • Patent number: 11846651
    Abstract: An electrostatic actuator includes a fixed electrode and a movable electrode arranged to face the fixed electrode. The movable electrode is configured to be displaceable with respect to the fixed electrode and a fixed portion. An attractive force acts between the movable electrode and the fixed portion. In the electrostatic actuator, a non-linear vibration of the movable electrode when a voltage is applied to the fixed electrode and the movable electrode is reduced by the attractive force acting between the movable electrode and the fixed portion.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: December 19, 2023
    Assignee: DENSO CORPORATION
    Inventors: Shota Harada, Keitaro Ito, Tomoya Jomori, Hideo Yamada, Yuuki Inagaki, Teruhisa Akashi, Yoshiyuki Hata
  • Publication number: 20230324174
    Abstract: An inertial force sensor may comprise: a base; a first block including an inclined surface that is inclined with respect to a base surface; a second block including an inclined surface that is inclined with respect to the base surface; a third block including an inclined surface that is inclined with respect to the base surface; a fourth block including an inclined surface that is inclined with respect to the base surface; and a connector configured to physically connect the first, second, third, and fourth blocks. In this inertial force sensor, the first and second blocks are aligned along a first direction parallel to the base surface with their inclined surfaces both facing inward or outward, and the third and fourth blocks are aligned along a second direction parallel to the base surface and orthogonal to the first direction with their inclined surfaces both facing inward or outward.
    Type: Application
    Filed: February 17, 2023
    Publication date: October 12, 2023
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Teruhisa AKASHI, Shota HARADA
  • Patent number: 11740087
    Abstract: A micro vibration body includes a curved surface portion, a recessed portion recessed from the curved surface portion, a bottom surface protruding portion protruding from a bottom surface of the recessed portion, and a through hole in the bottom surface protruding portion. A mounting substrate has a positioning recess, into which the bottom surface protruding portion is inserted, and electrode portions surrounding the inner frame portion. A joining member is in the positioning recess and joins the bottom surface protruding portion with the mounting substrate. The bottom surface is in contact with a region of the mounting substrate around the positioning recess. The bottom surface protruding portion has a tip end surface that is at a distance from the positioning recess. The joining member at least partially enters the through hole and is electrically connected to the conductive layer.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: August 29, 2023
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA, MIRISE Technologies Corporation
    Inventors: Shota Harada, Keitaro Ito, Katsuaki Goto, Yuuki Inagaki, Takahiko Yoshida, Yusuke Kawai, Teruhisa Akashi, Hirofumi Funabashi
  • Publication number: 20230264411
    Abstract: A molding device may comprise a mold, a plate, and a ring. The mold may comprise: a lower surface; an upper surface parallel to the lower surface; a hole defined in a part of the upper surface; and a through hole extending from a bottom surface of the hole to the lower surface of the mold. The plate may comprise a surface with a gas outlet defined therein. The ring may be arranged between the lower surface of the mold and the surface of the plate and connecting the mold and the plate. The ring may surround the through hole exposed on the lower surface of the mold and the gas outlet exposed on the surface of the plate. In a region where the ring is not arranged, a space may be defined between the lower surface of the mold and the surface of the plate.
    Type: Application
    Filed: February 3, 2023
    Publication date: August 24, 2023
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Norio FUJITSUKA, Keiichi SHIMAOKA, Teruhisa AKASHI, Shota HARADA, Yuuki INAGAKI, Katsuaki GOTO, Keitaro ITO, Takahiko YOSHIDA
  • Publication number: 20230243656
    Abstract: Before a pedestal is assembled, a sensitivity is inspected for each of sensors disposed in blocks respectively. In an inspection step, the blocks in which the sensors are disposed respectively are prepared. The blocks are fitted into main-axis groove portions of a main-axis tray, and the blocks are brought in contact with main-axis positioning surfaces of the main-axis groove portions to dispose the thickness direction of the main-axis tray and the main-axes of the sensors in parallel. The main-axis tray is arranged on a turntable such that a central axis of rotation of the turntable and the thickness direction of the main-axis tray are in parallel and that the central axis of rotation of the turntable and the main-axes of the sensors are in parallel. The turntable is made pivoting or swinging to inspect the sensitivities, in the main-axes, of the of sensors.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Teruhisa AKASHI, Shota HARADA
  • Publication number: 20230243866
    Abstract: A multi-axis inertial force sensor includes a mounting material, blocks, and sensors. Each block has a positioning portion that determines its position relative to a contact partner. A pedestal is formed by an assembly of the blocks where the positions are determined relative to each other based on the positioning portion and where inclined surfaces are oriented in different directions. The sensors are respectively arranged on the inclined surfaces of the pedestal so that the main axes are oriented in different directions to detect vector components of inertial force corresponding to the main axes.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Teruhisa AKASHI, Shota HARADA, Yoshiyuki HATA
  • Publication number: 20220369463
    Abstract: An electronic device includes a mounting member having a surface, an electronic component, a solder and a sidefill. The electronic component has a plurality of electrodes on a surface and is mounted on the surface of the mounting member so that the surface of the electronic component having the electrodes faces the surface of the mounting member. The solder is disposed between the mounting member and at least one of the electrodes of the electronic component to electrically and mechanically connect between the at least one of the electrodes and the mounting member. The sidefill is disposed on a periphery of the solder and mechanically connects between the electronic component and the mounting member.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 17, 2022
    Inventors: Keitaro ITO, Teruhisa AKASHI, Hideki TERASAWA, Suguru HOUCHI, Naoki YOSHIDA
  • Publication number: 20220353996
    Abstract: An electronic device includes a component mounting portion, an electronic component disposed on the component mounting portion, a solder between the component mounting portion and the electronic component, a mounting base member, and a supporting beam connecting the component mounting portion and the mounting base member. The supporting beam has a plurality of bent portions. The supporting beam includes a frame, an outer supporting portion connecting the frame and the mounting base member, and an inner supporting portion connecting the frame and the component mounting portion. The inner supporting portion is shifted from the outer supporting portion along the frame. One of the plurality of bent portions is a connecting portion between the frame and the outer supporting portion. Another of the plurality of bent portions is a connecting portion between the frame and the inner supporting portion.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Keitaro ITO, Teruhisa AKASHI, Hirofumi FUNABASHI
  • Publication number: 20220316880
    Abstract: A micro vibration body includes a curved surface portion, a recessed portion recessed from the curved surface portion, a bottom surface protruding portion protruding from a bottom surface of the recessed portion, and a through hole in the bottom surface protruding portion. A mounting substrate has a positioning recess, into which the bottom surface protruding portion is inserted, and electrode portions surrounding the inner frame portion. A joining member is in the positioning recess and joins the bottom surface protruding portion with the mounting substrate. The bottom surface is in contact with a region of the mounting substrate around the positioning recess. The bottom surface protruding portion has a tip end surface that is at a distance from the positioning recess. The joining member at least partially enters the through hole and is electrically connected to the conductive layer.
    Type: Application
    Filed: March 24, 2022
    Publication date: October 6, 2022
    Inventors: Shota HARADA, Keitaro ITO, Katsuaki GOTO, Yuuki INAGAKI, Takahiko YOSHIDA, Yusuke KAWAI, Teruhisa AKASHI, Hirofumi FUNABASHI
  • Publication number: 20220315411
    Abstract: A micro vibration body includes a curved surface portion, which has an annular curved surface, and a recessed portion, which is recessed from the curved surface portion. A mounting substrate includes an inner frame portion and electrode portions, which surround an inner frame portion. A joining member is provided in an inner region of the mounting substrate surrounded by the inner frame portion. The recessed portion of the micro vibration body has a bottom surface defining a mounted surface located in the inner region and joined to the mounting substrate via the joining member. The curved surface portion has a rim that includes an end portion of the curved surface portion on an opposite side to the recessed portion. The rim has a rim lower surface located on a same plane as the mounted surface or a tip end portion of the mounted surface.
    Type: Application
    Filed: March 24, 2022
    Publication date: October 6, 2022
    Inventors: Keitaro ITO, Shota HARADA, Katsuaki GOTO, Yuuki INAGAKI, Teruhisa AKASHI, Hirofumi FUNABASHI, Takahiko YOSHIDA, Yusuke KAWAI
  • Publication number: 20220317147
    Abstract: An electronic device includes: a sensor mounting portion; an inertial force sensor unit detecting an inertial force, the inertial force sensor unit being mounted on the sensor mounting portion; a mounting base substrate arranged in a housing; and a support beam having multiple connection portions connecting with the sensor mounting portion and having multiple connection portions connecting with the mounting base substrate, the support beam includes an angular portion at which an extension direction of the support beam is angled. The mounting base substrate defines a substrate penetration portion that penetrates the mounting base substrate in a thickness direction of the mounting base substrate. The sensor mounting portion is arranged at an inner side of the substrate penetration portion of the mounting base substrate when viewed from the thickness direction of the mounting base substrate.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 6, 2022
    Inventors: KEITARO ITO, TERUHISA AKASHI, HIROFUMI FUNABASHI
  • Publication number: 20220252398
    Abstract: A controller applies a predetermined voltage to a fixed part detection excitation electrode to vibrate a movable part in a second direction and simultaneously applies a predetermined voltage to a fixed part drive electrode to vibrate the movable part in a first direction. The controller acquires, of the movable part, a first resonance frequency along the first direction and a second resonance frequency along the second direction. The controller controls a drive spring adjustment part to adjust a spring constant of the drive spring, such that the first resonance frequency is maintained constant, and controls a detection spring adjustment part to adjust a spring constant of the detection spring such that the second resonance frequency is maintained constant. The controller detects the angular velocity based on a result of synchronously detecting signal from the fixed part detection electrode with the first resonance frequency.
    Type: Application
    Filed: April 27, 2022
    Publication date: August 11, 2022
    Inventors: KATSUAKI GOTO, SHOTA HARADA, TAKASHI KATSUMATA, YOSHIYUKI HATA, TERUHISA AKASHI
  • Publication number: 20220187072
    Abstract: A support structure for a micro-vibrator includes: a micro-vibrating body having a curved surface portion and a recess recessed from the curved surface portion; and a support member having a rod and an adhesive member arranged at a tip end of the rod. The support member is adhered on a connecting surface of the recess through the adhesive member. The connecting surface of the recess is an internal bottom surface of the recess.
    Type: Application
    Filed: November 2, 2021
    Publication date: June 16, 2022
    Inventors: TERUHISA AKASHI, HIROFUMI FUNABASHI, YUUKI INAGAKI
  • Patent number: 11027968
    Abstract: In a semiconductor device, a first substrate and a second substrate are bonded to each other through an insulating film. A hermetically sealed chamber is provided between the first substrate and the second substrate, and a sensing part is enclosed in the hermetically sealed chamber. The second substrate has a through hole penetrating in a stacking direction of the first substrate and the second substrate and exposing the first surface of the first substrate. A penetrating electrode is disposed on a wall surface of the through hole of the second substrate, and is electrically connected to the sensing part. A discharge path is provided, at a position located between the hermetically sealed chamber and the through hole for releasing outgas generated during bonding from the hermetically sealed chamber to the through hole.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: June 8, 2021
    Assignee: DENSO CORPORATION
    Inventors: Megumi Suzuki, Teruhisa Akashi
  • Publication number: 20210041475
    Abstract: An electrostatic actuator includes a fixed electrode and a movable electrode arranged to face the fixed electrode. The movable electrode is configured to be displaceable with respect to the fixed electrode and a fixed portion. An attractive force acts between the movable electrode and the fixed portion. In the electrostatic actuator, a non-linear vibration of the movable electrode when a voltage is applied to the fixed electrode and the movable electrode is reduced by the attractive force acting between the movable electrode and the fixed portion.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Shota HARADA, Keitaro ITO, Tomoya JOMORI, Hideo YAMADA, Yuuki INAGAKI, Teruhisa AKASHI, Yoshiyuki HATA
  • Publication number: 20210035799
    Abstract: A recess is formed in one silicon substrate. A silicon oxide film is formed in another one silicon substrate at a portion space apart from a space-to-be-formed region. The silicon oxide film has a groove surrounding the space-to-be-formed region and extending to an outer periphery of the other one silicon substrate. Further, the other one silicon substrate and the one silicon substrate are directly bonded to each other via the silicon oxide film so as to cover the groove. A gas discharge passage, a stacking structure of the silicon substrates and the silicon oxide film are formed, and the space is formed inside the stacking structure by the recess. Then, by the heat treatment, the gas inside the space is discharged to the outside of the stacking structure through the gas discharge passage.
    Type: Application
    Filed: September 24, 2020
    Publication date: February 4, 2021
    Inventors: Megumi SUZUKI, Yasuo YAMAMOTO, Teruhisa AKASHI
  • Patent number: 10840519
    Abstract: A fuel cell system may include a first fuel cell provided on a first substrate; a second fuel cell provided on a second substrate, and having a power generation capacity higher than a power generation capacity of the first fuel cell; a first heater provided at the first fuel cell; a second heater provided at the second fuel cell; and a battery, wherein the first heater heats the first fuel cell by using power supplied from the battery, and wherein the second heater heats the second fuel cell by using power supplied from the first fuel cell.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 17, 2020
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Teruhisa Akashi, Hirofumi Funabashi, Hidehito Matsuo
  • Publication number: 20200299128
    Abstract: In a semiconductor device, a first substrate and a second substrate are bonded to each other through an insulating film. A hermetically sealed chamber is provided between the first substrate and the second substrate, and a sensing part is enclosed in the hermetically sealed chamber. The second substrate has a through hole penetrating in a stacking direction of the first substrate and the second substrate and exposing the first surface of the first substrate. A penetrating electrode is disposed on a wall surface of the through hole of the second substrate, and is electrically connected to the sensing part. A discharge path is provided, at a position located between the hermetically sealed chamber and the through hole for releasing outgas generated during bonding from the hermetically sealed chamber to the through hole.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 24, 2020
    Inventors: Megumi SUZUKI, Teruhisa AKASHI