Patents by Inventor Tetsuya Kakehata

Tetsuya Kakehata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210320193
    Abstract: A semiconductor device having favorable electrical characteristics is provided. A manufacturing method of the semiconductor device includes the steps of forming a first oxide over a substrate; depositing a first insulator over the first oxide; forming an opening reaching the first oxide in the first insulator; depositing a first oxide film in contact with the first oxide and the first insulator in the opening; depositing a first insulating film over the first oxide film by a PEALD method; depositing a first conductive film over the first insulating film; and removing part of the first oxide film, part of the first insulating film, and part of the first conductive film until a top surface of the first insulator is exposed to form a second oxide, a second insulator, and a first conductor. The deposition of the first insulating film is performed while the substrate is heated to higher than or equal to 300° C.
    Type: Application
    Filed: August 30, 2019
    Publication date: October 14, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Naoki OKUNO, Tetsuya KAKEHATA, Hiroki KOMAGATA, Yuji EGI
  • Publication number: 20210242207
    Abstract: A semiconductor device that can be miniaturized or highly integrated is provided. A first conductor to a fourth conductor, a first insulator and a second insulator, and a first oxide and a second oxide are included, the first insulator is positioned over the first conductor, the first oxide is positioned over the first insulator, a first opening that reaches the first conductor is provided in the first insulator and the first oxide, the second conductor and the third conductor isolated from each other are positioned over the first oxide, at least part of the third conductor overlaps with the first opening and is in contact with a top surface of the first conductor, the second oxide is positioned over the first oxide so as to at least partly overlap with a region between the second conductor and the third conductor, the second insulator is positioned over the second oxide, and the fourth conductor is positioned over the second insulator.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 5, 2021
    Inventors: Shunpei YAMAZAKI, Daigo ITO, Ryota HODO, Yoshinori ANDO, Tetsuya KAKEHATA
  • Publication number: 20210233769
    Abstract: A semiconductor device having favorable electrical characteristics is provided. A metal oxide is formed over a substrate by the steps of: introducing a first precursor into a chamber in which the substrate is provided; introducing a first oxidizer after the introduction of the first precursor; introducing a second precursor after the introduction of the first oxidizer; and introducing a second oxidizer after the introduction of the second precursor.
    Type: Application
    Filed: May 31, 2019
    Publication date: July 29, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Tetsuya KAKEHATA, Yuji EGI, Yasuhiro JINBO, Yujiro SAKURADA
  • Publication number: 20210234046
    Abstract: A semiconductor device with high on-state current and high reliability is provided.
    Type: Application
    Filed: April 16, 2019
    Publication date: July 29, 2021
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya KAKEHATA, Yuta ENDO
  • Patent number: 10985278
    Abstract: An insulator is formed over a substrate, an opening is formed in the insulator, and an oxide semiconductor is formed in the opening. Then, part of the insulator is removed to expose a side surface of the oxide semiconductor.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 20, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tetsuya Kakehata
  • Publication number: 20200402910
    Abstract: A semiconductor device that is miniaturized and highly integrated is provided. One embodiment of the present invention is a semiconductor device including a first insulator, a second insulator, a first conductor, a second conductor, and a semiconductor layer; the first insulator includes an opening exposing the semiconductor layer; the first conductor is provided in contact with the semiconductor layer at a bottom of the opening; the second insulator is provided in contact with a top surface of the first conductor and a side surface in the opening; the second conductor is provided in contact with the top surface of the first conductor and in the opening with the second insulator therebetween; and the second insulator has a barrier property against oxygen.
    Type: Application
    Filed: March 28, 2019
    Publication date: December 24, 2020
    Inventors: Tetsuya KAKEHATA, Yuta ENDO
  • Patent number: 10026966
    Abstract: A lithium secondary battery which has high charge-discharge capacity, can be charged and discharged at high speed, and has little deterioration in battery characteristics due to charge and discharge is provided. A negative electrode includes a current collector and a negative electrode active material layer. The current collector includes a plurality of protrusion portions extending in a substantially perpendicular direction and a base portion connected to the plurality of protrusion portions. The protrusion portions and the base portion are formed using the same material containing titanium. A top surface of the base portion and at least a side surface of the protrusion portion are covered with the negative electrode active material layer. The negative electrode active material layer may be covered with graphene.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 17, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya Kakehata, Ryota Tajima, Teppei Oguni, Takeshi Osada, Shunpei Yamazaki, Shunsuke Adachi, Takuya Hirohashi
  • Patent number: 9837300
    Abstract: A semiconductor substrate and a base substrate are prepared; an oxide film is formed over the semiconductor substrate; the semiconductor substrate is irradiated with accelerated ions through the oxide film to form a separation layer at a predetermined depth from a surface of the semiconductor substrate; a nitrogen-containing layer is formed over the oxide film after the ion irradiation; the semiconductor substrate and the base substrate are disposed opposite to each other to bond a surface of the nitrogen-containing layer and a surface of the base substrate to each other; and the semiconductor substrate is heated to cause separation along the separation layer, thereby forming a single crystal semiconductor layer over the base substrate with the oxide film and the nitrogen-containing layer interposed therebetween.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 5, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya Kakehata, Kazutaka Kuriki
  • Publication number: 20170025543
    Abstract: An insulator is formed over a substrate, an opening is formed in the insulator, and an oxide semiconductor is formed in the opening. Then, part of the insulator is removed to expose a side surface of the oxide semiconductor.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 26, 2017
    Inventor: Tetsuya KAKEHATA
  • Patent number: 9536774
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: January 3, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
  • Patent number: 9231070
    Abstract: An object is to provide a technique to manufacture an insulating film having excellent film characteristics. In particular, an object is to provide a technique to manufacture a dense insulating film with a high withstand voltage. Moreover, an object is to provide a technique to manufacture an insulating film with few electron traps. An insulating film including oxygen is subjected to plasma treatment using a high frequency under the conditions where the electron density is 1×1011 cm?3 or more and the electron temperature is 1.5 eV or less in an atmosphere including oxygen.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 5, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya Kakehata, Tetsuhiro Tanaka, Yoshinobu Asami
  • Patent number: 9184173
    Abstract: The invention provides a semiconductor device and its manufacturing method in which a memory transistor and a plurality of thin film transistors that have gate insulating films with different thicknesses are fabricated over a substrate. The invention is characterized by the structural difference between the memory transistor and the plurality of thin film transistors. Specifically, the memory transistor and some of the plurality of thin film transistors are provided to have a bottom gate structure while the other thin film transistors are provided to have a top gate structure, which enables the reduction of characteristic defects of the transistor and simplification of its manufacturing process.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: November 10, 2015
    Assignee: Semiconductor Enery Laboratory Co., Ltd.
    Inventors: Tamae Takano, Tetsuya Kakehata, Shunpei Yamazaki
  • Patent number: 8912624
    Abstract: A semiconductor device and a method for manufacturing thereof are provided. The method includes a step of forming a first insulating film containing silicon and oxygen as its composition over a single-crystal semiconductor substrate, a step of forming a second insulating film containing silicon and nitrogen as its composition over the first insulating film, a step of irradiating the second insulating film with first ions to form a separation layer in the single-crystal semiconductor substrate, a step of irradiating the second insulating film with second ions so that halogen is contained in the first insulating film, and a step of performing heat treatment to separate the single-crystal semiconductor substrate with a single-crystal semiconductor film left over the supporting substrate.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tetsuya Kakehata
  • Patent number: 8895388
    Abstract: An object is to provide a technique for manufacturing an insulating layer with favorable withstand voltage. Another object is to provide a technique for manufacturing a semiconductor device having an insulating layer with favorable withstand voltage. By subjecting a semiconductor layer or semiconductor substrate mainly containing silicon to a high density plasma treatment, an insulating layer is formed on a surface of the semiconductor layer or a top surface of the semiconductor substrate. At this time, the high density plasma treatment is performed by switching a supply gas in the middle of the treatment from a gas containing a rare gas, oxygen, and hydrogen, to a gas containing a rare gas and oxygen.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya Kakehata, Tomokazu Yokoi
  • Patent number: 8884371
    Abstract: An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya Kakehata, Hideto Ohnuma, Yoshiaki Yamamoto, Kenichiro Makino
  • Publication number: 20140329371
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Hideto OHNUMA, Tetsuya KAKEHATA, Yoichi IIKUBO
  • Patent number: 8828844
    Abstract: A damaged region is formed by generation of plasma by excitation of a source gas, and by addition of ion species contained in the plasma from one of surfaces of a single crystal semiconductor substrate; an insulating layer is formed over the other surface of the single crystal semiconductor substrate; a supporting substrate is firmly attached to the single crystal semiconductor substrate so as to face the single crystal semiconductor substrate with the insulating layer interposed therebetween; separation is performed at the damaged region into the supporting substrate to which a single crystal semiconductor layer is attached and part of the single crystal semiconductor substrate by heating of the single crystal semiconductor substrate; dry etching is performed on a surface of the single crystal semiconductor layer attached to the supporting substrate; the single crystal semiconductor layer is recrystallized by irradiation of the single crystal semiconductor layer with a laser beam to melt at least part of the
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: September 9, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Tetsuya Kakehata, Akihisa Shimomura, Shinya Sasagawa, Motomu Kurata
  • Patent number: 8823063
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
  • Patent number: 8815657
    Abstract: After a single crystal semiconductor layer provided over a base substrate by attaching is irradiated with a laser beam, characteristics thereof are improved by first heat treatment, and after adding an impurity element imparting conductivity to the single crystal semiconductor layer, second heat treatment is performed at lower temperature than that of the first heat treatment.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 26, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Suguru Ozawa, Atsuo Isobe, Takashi Hamada, Junpei Momo, Hiroaki Honda, Takashi Shingu, Tetsuya Kakehata
  • Publication number: 20140103409
    Abstract: An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuya KAKEHATA, Hideto OHNUMA, Yoshiaki YAMAMOTO, Kenichiro MAKINO