Patents by Inventor Tetsuya Shimizu

Tetsuya Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050157216
    Abstract: Systems and methods are provided that facilitate detection and processing of A/V device power status in A/V networks. Preferably, a power detection system includes a current sensor coupled to the power cord of an A/V device, a current-to-voltage converter coupled to the sensor, a voltage comparator coupled to the converter, a reference voltage output circuit coupled to the comparator, and a micro-controller coupled to the comparator and the reference voltage output circuit. In operation, the current being drawn by the A/V device through its power cord is detected and converted to an input voltage, which is then compared to a device specific threshold voltage. If the input voltage is not greater than the threshold voltage, a “Power On” command is sent to the A/V device and the detection, conversion and comparison process is repeated. If the input voltage is greater than the threshold voltage, desired commands and/or instructions are sent to the A/V device.
    Type: Application
    Filed: January 16, 2004
    Publication date: July 21, 2005
    Inventors: Tetsuya Shimizu, Atul Batra, Wang Lou
  • Publication number: 20050098240
    Abstract: A ferritic free-cutting stainless steel excellent in surface roughness and outgass resistance is disclosed which comprises in weight percentage, 0.06% or less of C, 0.05 to 1.0% of Si, 2.0% or less of Mn, 0.050% or less of P, 0.05 to 0.50% of S, 2.0% or less of Cu, 2.0% or less of Ni, 9.0 to 25.0% of Cr, 4.0% or less of Mo, 0.065 to 2.0% of Ti, 0.0150% or less of 0, 0.020% or less of N, 0.001 to 0.100% of Al, and Fe and inevitable impurity in the rest portion, wherein the steel satisfies Equations (1) and (2) of the equations, [Ti]?1.3×[S]??Equation (1) [Mn]/[Ti]?3??Equation (2) (WTi+WCr) >2×WMn??Equation (3) where the amount of Ti contained in the steel is represented by [Ti], that of S is represented by [S] and that of Mn is represented by [Mn], and wherein the steel satisfies Equation (3) where the amount of Ti contained in sulfide produced in the texture of the steel is represented by WTi, that of Cr is represented by WCr and that of Mn is represented by WMn.
    Type: Application
    Filed: November 9, 2004
    Publication date: May 12, 2005
    Applicant: Daido Tokushuko Kabushiki Kaisha
    Inventors: Koichi Ishikawa, Tetsuya Shimizu
  • Publication number: 20050011589
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Application
    Filed: May 18, 2004
    Publication date: January 20, 2005
    Applicants: Kiyohito Ishida, Katsunari Oikawa, Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Takayuki Inoguchi, Tetsuya Shimizu, Michio Okabe
  • Publication number: 20050000602
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Application
    Filed: May 18, 2004
    Publication date: January 6, 2005
    Applicants: Kiyohito ISHIDA, Katsunari OIKAWA, Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Tetsuya Shimizu, Michio Okabe
  • Publication number: 20040187973
    Abstract: Disclosed is a nickel-base super heat resistant cast alloy, from which turbine wheels of automobile engines can be manufacture by casting. The alloy consists essentially of, by weight %, C: 0.02-0.50%, Si: up to 1.0%, Mn: up to 1.0%, Cr: 4.0-10.0%, Al: 2.0-8.0%, Co: up to 15.0%, W: 8.0-16.0%, Ta: 2.0-8.0%, Ti: up to 3.0%, Zr: 0.001-0.200% and B: 0.005-0.300% and the balance of Ni and inevitable impurities, provided that, [%Al]+[%Ti]+[%Ta], by atomic %, amounts to 12.0-15.5%, that it contains &ggr;/&ggr;′-eutectoid of, by area percentage, 1-15%, that it contains carbides of, by area percentage, 1-10%, and that the “M-value” determined by the alloy composition is in the range of 93-98. The turbine wheels withstand temperature increase of exhaust gas.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 30, 2004
    Inventors: Noritaka Takahata, Shigeki Ueta, Toshiharu Noda, Tetsuya Shimizu
  • Patent number: 6793746
    Abstract: Disclosed are stainless steel parts, particularly, parts of electronic apparatus, with which troubles caused by so-called “sulfide gas” mainly of H2S must be avoided. Release of the sulfide gas from the parts is effectively suppressed. The parts have high hardness and corrosion resistance, and can be produced with high finishing accuracy. The stainless steel parts are produced by processing a ferritic or a martensitic stainless steel of a specific alloy composition by forging and/or machining to the shape of the part followed by quenching and tempering, or quenching and tempering followed by machining to the shape of the part, and applying a solution of oxidative acid to the surface of the part so as to dissolve and remove sulfides existing on the surface of the part.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: September 21, 2004
    Assignee: Daido Steel Co., Ltd.
    Inventors: Tetsuya Shimizu, Michio Okabe
  • Patent number: 6756011
    Abstract: A high-strength, high corrosion-resistant and non-magnetic stainless steel which is further excellent in strength and corrosion resistance and safe in the living body and also can stand against various corrosive environments. The stainless steel comprises 0.15% by weight or less of C, 1.0% or less of Si, 3.0 to 12.0% of Mn, 0.030% or less of P, 0.50% or less of Ni, 15.0 to 21.0% of Cr, 0.70 to 1.50% of N, 0.020% or less of Al and 0.020% or less of O, and a remainder of Fe and inevitable impurities.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: June 29, 2004
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Takeshi Koga, Tetsuya Shimizu, Toshiharu Noda
  • Publication number: 20040081575
    Abstract: Disclosed is a corrosion resistant steel suitable for the material of printer shafts. The steel has good machinability, corrosion resistance sufficient for ordinary indoor use without plating the product surfaces, and improved straightness after wire drawing and cold workability, and further, is less expensive. Alloy composition is, by weight percent, C: 0.005-0.200%, Si: up to 1.0%, Mn: up to 2.0%, P: up to 0.05%, Cu: up to 2.0%, Ni: up to 2.0%, Cr: 2.0-9.0%, one or both of Ti and Zr: [Ti%]+0.52[Zr%]=0.03-1.20%, one or both of S: 0.01-0.50% and Se:0.01-0.40%, N: up to 0.050% and O: up to 0.030%, and the balance of Fe and inevitable impurities, with the conditions of [S%]≧32[C%]/12, and 0<L ≦0.5, wherein L=4[C%]/([Ti%]+0.52[Zr%]). The inclusions therein are, Ti-based, Zr-based, or Ti—Zr-based compound or compounds containing C and one or both of S and Se.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 29, 2004
    Inventors: Koichi Ishikawa, Toshiharu Noda, Tetsuya Shimizu
  • Patent number: 6718122
    Abstract: An object of the present invention is to provide a digital VTR wherein, without increasing a transmission rate of an image memory and a data bus corrected thereto, a double error correction coding and decoding process can be achieved. In order to achieve the object, an input and output memory 240 for storing an image data according to an input and an output formats, and a recording and reproducing memory 250 for storing the image according to an image format are provided. To the input and output memory 240, via an input and output bus 234, an input and output circuits 232 and 238 is corrected. In data transmission between the input output memory 240 and the recording and reproducing memory 250, a format conversion, and coding and decoding of an external code are performed. To the recording and reproducing memory 250, via recording and reproducing bus 252, inner coding and decoding circuits 254A and 254B are corrected.
    Type: Grant
    Filed: October 12, 1994
    Date of Patent: April 6, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshiki Ishii, Makoto Shimokoriyama, Tetsuya Shimizu, Katsumi Karasawa
  • Patent number: 6673165
    Abstract: A high-hardness martensitic stainless steel excellent in corrosion resistance, comprising less than 0.15% by weight of C, from 0.10 to 1.0% by weight of Si, from 0.10 to 2.0% by weight of Mn, 0.010% or less of S, from 12.0 to 18.5% by weight of Cr, from 0.40 to 0.80% by weight of N, less than 0.030% by weight of Al, less than 0.020% by weight of O, and substantially the balance of Fe. The martensitic stainless steel of the present invention has cold-workability and hardness after tempering higher than that of SUS420J2 and corrosion resistance equivalent to or higher than that of an austenitic stainless steel SUS316.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: January 6, 2004
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Takeshi Koga, Tetsuya Shimizu, Toshiharu Noda
  • Patent number: 6667005
    Abstract: Disclosed is a corrosion resistant steel having good machinability with sufficient corrosion resistance in the ordinary indoor circumstances and suitable for manufacturing shafts of various small motors and OA-machines. The steel comprises, by weight %, C: 0.005-0.200%, P: up to 0.05%, Cu: up to 2.0%, Ni: up to 2.0%, Cr: 2.0-9.0%, one or both of Ti and Zr: in such an amount as [Ti %]+0.52[Zr %]: 0.03-1.20%, one or both of S: 0.01-0.50% and Se: 0.01-0.40%, N: up to 0.050% and O: up to 0.030%, the balance being Fe and inevitable impurities. The steel is characterized by the inclusion therein, which are Ti-based, Zr-based or Ti-Zr-based compound or compounds containing C and one or both of S and Se.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: December 23, 2003
    Assignees: Dokuritsu Gyousei Houjin Sangyo Gijutsu Sougo Kenkyusho, Daido Steel Co., LTD
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Koichi Ishikawa, Toshiharu Noda, Tetsuya Shimizu
  • Patent number: 6668021
    Abstract: An encoding apparatus includes: (a) input circuitry for inputting image data including luminance component data and chrominance component data; (b) block forming circuitry for dividing the image data input by input circuitry into blocks so as to divide the respective component data into the blocks separately, each of the blocks being formed by a same predetermined amount of the input image data; and (c) encoding circuitry for encoding the input image data divided into the blocks by the block forming circuitry. The encoding circuitry includes code amount control circuitry for controlling a code amount of encoded data on a unit basis of a predetermined number of blocks, the predetermined number of blocks being formed so as to include at least one of the blocks of each type of component data.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: December 23, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuya Shimizu, Yoshitaka Takeuchi
  • Publication number: 20030170138
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti, Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti, Zr)4C2(S, Se, Te)2 as the (Ti, Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Application
    Filed: September 13, 2002
    Publication date: September 11, 2003
    Applicant: Kiyohito ISHIDA
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Takayuki Inoguchi, Tetsuya Shimizu, Michio Okabe
  • Patent number: 6563276
    Abstract: A CRT display apparatus capable of displaying images in high contrast and high brightness without causing noises and halftone-reproduction degradation within dark areas is disclosed. The apparatus includes a circuit for generating an R-control signal, a G-control signal and a B-control signal by removing, from each of the R-, G- and B-video signals, portions which are below a predetermined level in amplitude, an amplification circuit for inverting and amplifying the R-, G- and B-control signals, and a selection circuit for selecting, for each of the three G1 electrodes, either a corresponding one of the R-, G- and B-control signals inverted and amplified by the amplification circuit or a potential of a predetermined value in accordance with an instruction from an outside, and applying each of the three G1 electrodes with a selected one of the corresponding one of the R-, G- and B-control signals and the potential.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: May 13, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Akinori Heishi, Hironobu Yasui, Tetsuya Shimizu
  • Publication number: 20030063995
    Abstract: Disclosed is a corrosion resistant steel having good machinability with sufficient corrosion resistance in the ordinary indoor circumstances and suitable for manufacturing shafts of various small motors and OA-machines. The steel comprises, by weight %, C: 0.005-0.200%, P: up to 0.05%, Cu: up to 2.0%, Ni: up to 2.0%, Cr: 2.0-9.0%, one or both of Ti and Zr: in such an amount as [Ti%]+0.52[Zr%]: 0.03-1.20%, one or both of S: 0.01-0.50% and Se: 0.01-0.40%, N: up to 0.050% and O: up to 0.030%, the balance being Fe and inevitable impurities. The steel is characterized by the inclusion therein, which are Ti-based, Zr-based or Ti—Zr-based compound or compounds containing C and one or both of S and Se.
    Type: Application
    Filed: May 15, 2002
    Publication date: April 3, 2003
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Koichi Ishikawa, Toshiharu Noda, Tetsuya Shimizu
  • Publication number: 20030001526
    Abstract: A CRT display apparatus capable of displaying images in high contrast and high brightness without causing noises and halftone-reproduction degradation within dark areas is disclosed. The apparatus includes a circuit for generating an R-control signal, a G-control signal and a B-control signal by removing, from each of the R-, G- and B-video signals, portions which are below a predetermined level in amplitude, an amplification circuit for inverting and amplifying the R-, G- and B-control signals, and a selection circuit for selecting, for each of the three G1 electrodes, either a corresponding one of the R-, G- and B-control signals inverted and amplified by the amplification circuit or a potential of a predetermined value in accordance with an instruction from an outside, and applying each of the three G1 electrodes with a selected one of the corresponding one of the R-, G- and B-control signals and the potential.
    Type: Application
    Filed: November 21, 2001
    Publication date: January 2, 2003
    Inventors: Akinori Heishi, Hironobu Yasui, Tetsuya Shimizu
  • Publication number: 20020170638
    Abstract: Disclosed are stainless steel parts, particularly, parts of electronic apparatus, with which troubles caused by so-called “sulfide gas” mainly of H2S must be avoided. Release of the sulfide gas from the parts is effectively suppressed. The parts have high hardness and corrosion resistance, and can be produced with high finishing accuracy. The stainless steel parts are produced by processing a ferritic or a martensitic stainless steel of a specific alloy composition by forging and/or machining to the shape of the part followed by quenching and tempering, or quenching and tempering followed by machining to the shape of the part, and applying a solution of oxidative acid to the surface of the part so as to dissolve and remove sulfides existing on the surface of the part.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 21, 2002
    Inventors: Tetsuya Shimizu, Michio Okabe
  • Publication number: 20020164260
    Abstract: A high-hardness martensitic stainless steel excellent in corrosion resistance, comprising less than 0.15% by weight of C, from 0.10 to 1.0% by weight of Si, from 0.10 to 2.0% by weight of Mn, 0.010% or less of S, from 12.0 to 18.5% by weight of Cr, from 0.40 to 0.80% by weight of N, less than 0.030% by weight of Al, less than 0.020% by weight of O, and substantially the balance of Fe. The martensitic stainless steel of the present invention has cold-workability and hardness after tempering higher than that of SUS420J2 and corrosion resistance equivalent to or higher than that of an austenitic stainless steel SUS316.
    Type: Application
    Filed: February 27, 2002
    Publication date: November 7, 2002
    Inventors: Takeshi Koga, Tetsuya Shimizu, Toshiharu Noda
  • Patent number: 6473879
    Abstract: Where a recording medium recorded on at a slave side apparatus is reproduced, it has been made possible to perform on cite modification processing identical to that conducted at a master side apparatus, by reproducing, at the master side apparatus, the primary information added with parity symbol for error correction from the recording medium on which the primary information is recorded, correcting the symbol error of primary information reproduced at the reproducing means using the reproduced parity symbol, producing the flag which indicates the production of an uncorrectable symbol error in one unit of a block of a specified amount of information and thus outputting the modification information corresponding to the primary information and the flag and forming, at the slave side, the parity symbol for correction of error of primary information output at the master side apparatus and recording the primary information with the parity symbol and modification information, on the same recording medium.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: October 29, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshiki Ishii, Akihiro Shikakura, Tetsuya Shimizu
  • Publication number: 20020148537
    Abstract: A high-strength, high corrosion-resistant and non-magnetic stainless steel which is further excellent in strength and corrosion resistance and safe in the living body and also can stand against various corrosive environments. The stainless steel comprises 0.15% by weight or less of C, 1.0% or less of Si, 3.0 to 12.0% of Mn, 0.030% or less of P, 0.50% or less of Ni, 15.0 to 21.0% of Cr, 0.70 to 1.50% of N, 0.020% or less of Al and 0.020% or less of O, and a remainder of Fe and inevitable impurities.
    Type: Application
    Filed: February 5, 2002
    Publication date: October 17, 2002
    Inventors: Takeshi Koga, Tetsuya Shimizu, Toshiharu Noda