Patents by Inventor Theodore A. Waniuk

Theodore A. Waniuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150289605
    Abstract: Embodiments relates to a hook side fastener having hooks and a loop side fastener having loops. The hooks and/or loops are made of bulk solidifying amorphous metal alloy. Other embodiments relate to methods of making and using the hook side and loop side fasteners.
    Type: Application
    Filed: March 23, 2012
    Publication date: October 15, 2015
    Applicant: Crucible Intellectual Property, LLC
    Inventors: Christopher D. Prest, Joseph C. Poole, Theodore A. Waniuk, Quoc Tran Pham, Joseph Stevick
  • Patent number: 9101977
    Abstract: Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: August 11, 2015
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20150217368
    Abstract: Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.
    Type: Application
    Filed: April 13, 2015
    Publication date: August 6, 2015
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20150144292
    Abstract: Disclosed is an apparatus comprising at least one gate and a vessel, the gate being configured to move between a first position to restrict entry into an ejection path of the vessel and contain a material in a meltable form within the vessel during melting of the material, and a second position to allow movement of the material in a molten form through the ejection path. The gate can move linearly or rotate between its first and second positions, for example. The apparatus is configured to melt the material and the at least one gate is configured to allow the apparatus to be maintained under vacuum during the melting of the material. Melting can be performed using an induction source. The apparatus may also include a mold configured to receive molten material and for molding a molded part, such as a bulk amorphous alloy part.
    Type: Application
    Filed: October 14, 2011
    Publication date: May 28, 2015
    Applicant: Crucible Intellectual Property, LLC
    Inventors: Quoc Tran Pham, Michael Deming, Theodore A. Waniuk, Sean O'Keeffe
  • Publication number: 20150131694
    Abstract: Disclosed is an induction shield configured to substantially reduce emissions emitted from an induction heat source (e.g., coil) during use. The shield is positioned adjacent to a vessel (e.g., in an injection system) having a melting portion configured to receive meltable material to be melted therein and an induction heat source positioned adjacent the vessel configured to melt the meltable material received in the melting portion of the vessel. The shield may include a tube configuration configured to flow liquid therein to absorb heat emitted from the heat source. The tube configuration can comprise a single tube or multiple tubes. The shield can be positioned adjacent the induction source in a helical manner, for example, or at ends of the vessel. The shield can be used during melting of amorphous alloy and for forming a part.
    Type: Application
    Filed: September 20, 2011
    Publication date: May 14, 2015
    Applicant: Crucible Intellectual Property, LLC
    Inventors: QuocTran Pham, Sean Timothy O'keeffe, Joseph Stevick, Theodore A. Waniuk
  • Publication number: 20150107730
    Abstract: Embodiments herein relate to a process for semi-continuous or continuous production of a solid object from a molten metal, with the potential of being a cleaner and less expensive alternative to complicated split mold processes currently used. The embodiments can be used to perform multiple melt/pour cycles without breaking vacuum, with the system only opened to remove the solid object via an air lock, e.g., a separate chamber or load lock, which will be periodically opened to remove feedstock without breaking the vacuum of the process chamber. Embodiments also relate to an apparatus for semi-continuous or continuous production of a solid object from a molten metal.
    Type: Application
    Filed: January 23, 2012
    Publication date: April 23, 2015
    Inventors: Quoc Tran Pham, Sean Timothy O'Keeffe, Theodore A. Waniuk
  • Patent number: 9004151
    Abstract: Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean Timothy O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 9004149
    Abstract: The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 14, 2015
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot Stratton, Joseph Poole, Matthew Scott, Christopher Prest
  • Publication number: 20150090421
    Abstract: Exemplary embodiments described herein related to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.
    Type: Application
    Filed: September 9, 2014
    Publication date: April 2, 2015
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20150089792
    Abstract: In some embodiments, processes for testing for structural flaws in sapphire parts such as display cover plates used in the manufacturing of electronic devices are disclosed. A process may include transmitting a destructive acoustic signal onto a sapphire part, and determining whether the sapphire part failed in response to the destructive signal. The destructive acoustic signal may include a Rayleigh acoustic wave, wherein the destructive acoustic signal breaks the sapphire part if the sapphire part has a surface flaw larger than a specified size. In this manner, only sapphire parts that can withstand the destructive acoustic signal are used in manufacturing of the electronic device.
    Type: Application
    Filed: August 18, 2014
    Publication date: April 2, 2015
    Inventors: Dale N. Memering, Matthew Rogers, Theodore A. Waniuk
  • Patent number: 8991474
    Abstract: Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: March 31, 2015
    Assignee: Apple, Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20150000858
    Abstract: Various embodiments provide methods and apparatus for forming bulk metallic glass (BMG) articles using a mold having a stationary mold part and a movable mold part paired to form a mold cavity. A molten material can be injected to fill the mold cavity. The molten material can then be cooled into a BMG article at a desired cooling rate. While injecting and/or cooling the molten material, the movement of the movable mold part can be controlled, such that a thermal contact between the molten material and the mold can be maintained. BMG articles can be formed without forming an underfilled part. Additional structural features can be imparted in the BMG article during formation. At least a portion of the formed BMG article can have an aspect ratio (first dimension/second dimension) of at least 10 or less than 0.1.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140369375
    Abstract: Disclosed are vessels used for melting material to be injection molded to form a part. One vessel has a body formed from a plurality of elongate segments configured to be electrically isolated from each other and with a melting portion for melting meltable material therein. Material can be provided between adjacent segments. An induction coil can be used to melt the material in the body. Other vessels have a body with an embedded induction coil therein. The embedded coil can be configured to surround the melting portion, or can be positioned below and/or adjacent the melting portion, so that meltable material is melted. The vessels can be used to melt amorphous alloys, for example.
    Type: Application
    Filed: January 23, 2012
    Publication date: December 18, 2014
    Applicant: Apple Inc.
    Inventors: Quoc Tran Pham, Michael Deming, Theodore A. Waniuk, Sean Timothy O'Keeffe, Joseph Stevick
  • Publication number: 20140361670
    Abstract: A metal matrix composite using as one of the components a precious metal is described. In one embodiment, the precious metal takes the form of gold and the metal matrix composite has a gold mass fraction in accordance with 18 k. The metal matrix composite can be formed by blending a precious metal (e.g., gold) powder and a ceramic powder, forming a mixture that is then compressed within a die having a near net shape of the metal matrix composite. The compressed mixture in the die is then heated to sinter the precious metal and ceramic powder. Other techniques for forming the precious metal matrix composite using HIP, and a diamond powder are also disclosed.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Inventors: Christopher D. Prest, Lucy E. Browning, Michael K. Pilliod, Theodore A. Waniuk
  • Publication number: 20140360695
    Abstract: Various embodiments provide apparatus and methods for injection molding. In one embodiment, a constraining plunger may be configured in-line with an injection plunger to transfer a molten material from a melt zone and into a mold. The constraining and injection plungers are configured to constrain the molten material there-between while moving. The constrained molten material can be controlled to have an optimum surface area to volume ratio to provide minimized heat loss during the injection molding process. The system can be configured in a longitudinal direction (e.g., horizontally) for movement between the melt zone and mold along a longitudinal axis. A molded bulk amorphous object can be ejected from the mold.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140332176
    Abstract: Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 13, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140318730
    Abstract: Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140305932
    Abstract: Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: heating at least a portion of the BMG feedstock to temperatures slightly below a solidus temperature of the BMG, wherein the portion remains a solid at the temperatures slightly below the solidus temperature and wherein a temperature distribution of the portion is essentially uniform; heating the portion of the BMG feedstock to temperatures above a liquidus point.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140297202
    Abstract: One embodiment provides a method of determining an unknown degree of crystallinity, the method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between electrical resistivity and temperature for one of a plurality of reference alloy samples having a chemical composition and various pre-determined degrees of crystallinity; for an alloy specimen having the chemical composition and the unknown degree of crystallinity, obtaining a curve representing the electrical resistivity and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.
    Type: Application
    Filed: August 5, 2011
    Publication date: October 2, 2014
    Applicant: Apple Inc.
    Inventors: Stephen P. Zadesky, Christopher D. Prest, Theodore A. Waniuk
  • Publication number: 20140261898
    Abstract: Disclosed herein is a bulk metallic glasses (BMG) comprising 0.0001 wt % to 0.7 wt % of Be, 0.0001 wt % to 0.2 wt % of Be, or 0.06 wt % to 0.08 wt % of Be. Be may have the effect of reducing a liquidus temperature of the BMG relative to melting temperatures of individual alloying elements of the BMG.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Edgar E. Vidal, James A. Yurko, Charles Pokross, Randy S. Beals, Lawrence H. Ryczek, Theodore A. Waniuk, Joseph C. Poole, Christopher D. Prest, Dermot J. Stratton