Patents by Inventor Thilo Scheiper

Thilo Scheiper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110101427
    Abstract: When forming a sophisticated high-k metal gate stack in an early manufacturing stage, the dielectric cap layer may be efficiently removed without unduly affecting the drain and source extension regions. To this end, a specifically designed sidewall spacer structure may be used, such as a silicon dioxide spacer element in combination with a silicon nitride etch stop liner. The spacer structure may thus enable the removal of the dielectric cap layer while still maintaining the functions of an implantation mask and a silicidation mask during the further processing.
    Type: Application
    Filed: October 6, 2010
    Publication date: May 5, 2011
    Inventors: Thilo Scheiper, Andy Wei, Sven Beyer, Jan Hoentschel, Uwe Griebenow
  • Publication number: 20110104863
    Abstract: When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage, the dielectric cap layer of the gate electrode structures may be efficiently removed on the basis of a carbon spacer element, which may thus preserve the integrity of the silicon nitride spacer structure. Thereafter, the sacrificial carbon spacer may be removed substantially without affecting other device areas, such as isolation structures, active regions and the like, which may contribute to superior process conditions during the further processing of the semiconductor device.
    Type: Application
    Filed: September 30, 2010
    Publication date: May 5, 2011
    Inventors: Sven Beyer, Thilo Scheiper, Jan Hoentschel, Markus Lenski
  • Publication number: 20110049642
    Abstract: In sophisticated manufacturing techniques, the work function and thus the threshold voltage of transistor elements may be adjusted in an early manufacturing stage by providing a work function adjusting species within the high-k dielectric material with substantially the same spatial distribution in the gate dielectric materials of different thickness. After the incorporation of the work function adjusting species, the final thickness of the gate dielectric materials may be adjusted by selectively forming an additional dielectric layer so that the further patterning of the gate electrode structures may be accomplished with a high degree of compatibility to conventional manufacturing techniques. Consequently, extremely complicated processes for re-adjusting the threshold voltages of transistors having a different thickness gate dielectric material may be avoided.
    Type: Application
    Filed: August 2, 2010
    Publication date: March 3, 2011
    Inventors: Thilo Scheiper, Andy Wei, Martin Trentzsch
  • Publication number: 20100193860
    Abstract: In sophisticated transistor elements, enhanced profile uniformity along the transistor width direction may be accomplished by using a gate material in an amorphous state, thereby reducing channeling effects and line edge roughness. In sophisticated high-k metal gate approaches, an appropriate sequence may be applied to avoid a change of the amorphous state prior to performing the critical implantation processes for forming drain and source extension regions and halo regions.
    Type: Application
    Filed: January 25, 2010
    Publication date: August 5, 2010
    Inventors: Thilo Scheiper, Andy Wei, Sven Beyer
  • Publication number: 20100109091
    Abstract: During the manufacturing process for forming sophisticated transistor elements, the gate height may be reduced and a recessed drain and source configuration may be obtained in a common etch sequence prior to forming respective metal silicide regions. Since the corresponding sidewall spacer structure may be maintained during the etch sequence, controllability and uniformity of the silicidation process in the gate electrode may be enhanced, thereby obtaining a reduced degree of threshold variability. Furthermore, the recessed drain and source configuration may provide reduced overall series resistance and enhanced stress transfer efficiency.
    Type: Application
    Filed: August 28, 2009
    Publication date: May 6, 2010
    Inventors: Uwe Griebenow, Andy Wei, Jan Hoentschel, Thilo Scheiper
  • Publication number: 20090321836
    Abstract: Three-dimensional transistor structures such as FinFETS and tri-gate transistors may be formed on the basis of an enhanced masking regime, thereby enabling the formation of drain and source areas, the fins and isolation structures in a self-aligned manner within a bulk semiconductor material. After defining the basic fin structures, highly efficient manufacturing techniques of planar transistor configurations may be used, thereby even further enhancing overall performance of the three-dimensional transistor configurations.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 31, 2009
    Inventors: Andy Wei, Robert Mulfinger, Thilo Scheiper, Thorsten Kammler