Patents by Inventor Thilo Scheiper

Thilo Scheiper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8476131
    Abstract: In one example, a method disclosed herein includes forming a gate electrode structure for a PMOS transistor and a gate electrode structure for a NMOS transistor, forming a plurality of cavities in the substrate proximate the gate electrode structure of the PMOS transistor and performing an epitaxial deposition process to form raised silicon-germanium regions is the cavities. The method concludes with the step of performing a common etching process on the PMOS transistor and the NMOS transistor to define recessed regions in the substrate proximate the gate electrode structure of the NMOS transistor and to reduce the amount of the silicon-germanium material positioned above the surface of the substrate for the PMOS transistor.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: July 2, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stefan Flachowsky, Ralf Illgen, Thilo Scheiper, Ricardo P. Mikalo
  • Patent number: 8455314
    Abstract: In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: June 4, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Thilo Scheiper, Sven Beyer
  • Patent number: 8450163
    Abstract: In a replacement gate approach, the semiconductor material or at least a significant portion thereof in a non-transistor structure, such as a precision resistor, an electronic fuse and the like, may be preserved upon replacing the semiconductor material in the gate electrode structures. To this end, an appropriate dielectric material may be provided at least prior to the removal of the semiconductor material in the gate electrode structures, without requiring significant modifications of established replacement gate approaches.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 28, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sven Beyer, Klaus Hempel, Roland Stejskal, Andy Wei, Thilo Scheiper, Andreas Kurz, Uwe Griebenow, Jan Hoentschel
  • Publication number: 20130105885
    Abstract: Lithographic limitations on gate and induced channel length in MOSFETS are avoided by forming non-planar MOSFETS in a cavity extending into a semiconductor substrate. The gate insulator and channel region lie proximate a cavity sidewall having angle ? preferably about ?90 degrees with respect to the semiconductor surface. The channel length depends on the bottom depth of the cavity and the depth from the surface of a source or drain region adjacent the cavity. The corresponding drain or source lies at the cavity bottom. The cavity sidewall extends therebetween. Neither depth is lithographic dependent. Very short channels can be consistently formed, providing improved performance and manufacturing yield. Source, drain and gate connections are brought to the same surface so that complex circuits can be readily constructed. The source and drain regions are preferably formed epitaxially and strain inducing materials can be used therein to improve channel carrier mobility.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stefan Flachowsky, Thilo Scheiper
  • Patent number: 8426266
    Abstract: In sophisticated semiconductor devices, stress memorization techniques may be applied on the basis of a silicon nitride material, which may be subsequently modified into a low-k dielectric material in order to obtain low-k spacer elements, thereby enhancing performance of sophisticated semiconductor devices. The modification of the initial silicon nitride-based spacer material may be accomplished on the basis of an oxygen implantation process.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 23, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Andreas Kurz, Uwe Griebenow, Thilo Scheiper
  • Patent number: 8409942
    Abstract: In a replacement gate approach, a spacer may be formed in the gate opening after the removal of the placeholder material, thereby providing a superior cross-sectional shape upon forming any electrode metals in the gate opening. Moreover, the spacer may be used for reducing the gate length, while not requiring more complex gate patterning strategies.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 2, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Sven Beyer, Uwe Griebenow, Jan Hoentschel
  • Publication number: 20130075820
    Abstract: When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage, superior process robustness, reduced yield loss and an enhanced degree of flexibility in designing the overall process flow may be accomplished by forming and patterning the sensitive gate materials prior to forming isolation regions.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Peter Baars
  • Patent number: 8404550
    Abstract: In a P-channel transistor comprising a high-k metal gate electrode structure, a superior dopant profile may be obtained, at least in the threshold adjusting semiconductor material, such as a silicon/germanium material, by incorporating a diffusion blocking species, such as fluorine, prior to forming the threshold adjusting semiconductor material. Consequently, the drain and source extension regions may be provided with a high dopant concentration as required for obtaining the target Miller capacitance without inducing undue dopant diffusion below the threshold adjusting semiconductor material, which may otherwise result in increased leakage currents and increased risk of punch through events.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 26, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Sven Beyer, Andy Wei, Jan Hoentschel
  • Publication number: 20130071977
    Abstract: Methods are provided for fabricating an integrated circuit that includes gate to active contacts. One method includes processing the IC in a replacement gate technology including forming dummy gates, sidewall spacers on the dummy gates, and metal silicide contacts to active areas. A fill layer is deposited and planarized to expose the dummy gates and the dummy gates are removed. A mask is formed having an opening overlying a portion of the channel region from which the dummy gate was removed and a portion of an adjacent metal silicide contact. The fill layer and a portion of the sidewall spacers exposed through the mask opening are etched to expose a portion of the adjacent metal silicide contact. A gate electrode material is deposited overlying the channel region and exposed metal silicide contact and is planarized to form a gate electrode and a gate-to-metal silicide contact interconnect.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Stefan Flachowsky, Andy Wei
  • Publication number: 20130065367
    Abstract: In one example, a method disclosed herein includes the steps of forming gate electrode structures for a PMOS transistor and for an NMOS transistor, forming a first spacer proximate the gate electrode structures, after forming the first spacer, forming extension implant regions in the substrate for the transistors and after forming the extension implant regions, forming a second spacer proximate the first spacer for the PMOS transistor. This method also includes performing an etching process with the second spacer in place to define a plurality of cavities in the substrate proximate the gate structure for the PMOS transistor, removing the first and second spacers, forming a third spacer proximate the gate electrode structures of both of the transistors, and forming deep source/drain implant regions in the substrate for the transistors.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stefan Flachowsky, Thilo Scheiper, Ricardo P. Mikalo
  • Publication number: 20130056854
    Abstract: Electron mobility and hole mobility is improved in long channel semiconductor devices and resistors by employing complementary stress liners. Embodiments include forming a long channel semiconductor device on a substrate, and forming a complementary stress liner on the semiconductor device. Embodiments include forming a resistor on a substrate, and tuning the resistance of the resistor by forming a complementary stress liner on the resistor. Compressive stress liners are employed for improving electron mobility in n-type devices, and tensile stress liners are employed for improving hole mobility in p-type devices.
    Type: Application
    Filed: November 2, 2012
    Publication date: March 7, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Stefan FLACHOWSKY, Jan HOENTSCHEL, Thilo SCHEIPER
  • Publication number: 20130052783
    Abstract: Disclosed herein are various methods of forming stressed silicon-carbon areas in an NMOS transistor device. In one example, a method disclosed herein includes forming a layer of amorphous carbon above a surface of a semiconducting substrate comprising a plurality of N-doped regions and performing an ion implantation process on the layer of amorphous carbon to dislodge carbon atoms from the layer of amorphous carbon and to drive the dislodged carbon atoms into the N-doped regions in the substrate.
    Type: Application
    Filed: August 24, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Stefan Flachowsky, Ralf Illgen, Thilo Scheiper, Jan Hoentschel
  • Publication number: 20130049126
    Abstract: In one example, a method disclosed herein includes forming a gate electrode structure for a PMOS transistor and a gate electrode structure for a NMOS transistor, forming a plurality of cavities in the substrate proximate the gate electrode structure of the PMOS transistor and performing an epitaxial deposition process to form raised silicon-germanium regions is the cavities. The method concludes with the step of performing a common etching process on the PMOS transistor and the NMOS transistor to define recessed regions in the substrate proximate the gate electrode structure of the NMOS transistor and to reduce the amount of the silicon-germanium material positioned above the surface of the substrate for the PMOS transistor.
    Type: Application
    Filed: August 24, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stefan Flachowsky, Ralf Illgen, Thilo Scheiper, Ricardo P. Mikalo
  • Publication number: 20130052819
    Abstract: Disclosed herein are various methods of forming metal silicide regions on semiconductor devices by using different temperatures during the silicidation processes. In one example, the method includes forming a plurality of N-doped source/drain regions and a plurality of P-doped source/drain regions in a semiconducting substrate and performing a first heating process at a first temperature to initially form a first metal silicide region in each of the P-doped source/drain regions. The method further includes performing a second heating process at a second temperature to initially form a second metal silicide region in each of the N-doped source/drain regions, wherein the second temperature is less than the first temperature and performing a third heating process at a third temperature to complete the formation of the first and second metal silicide regions, wherein the third temperature is greater than the first temperature.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Peter Javorka, Stefan Flachowsky, Clemens Fitz
  • Publication number: 20130049128
    Abstract: Disclosed herein are various semiconductor devices with dual metal silicide regions and to various methods of making such devices. In one example, the device includes a gate electrode and a plurality of source/drain regions formed in a substrate proximate the gate electrode structure. The device further includes a first metal silicide region formed in each of the source/drain regions, wherein the first metal silicide region has an inner boundary and a second metal silicide region formed in each of the source/drain regions, wherein the second metal silicide region is positioned laterally between the inner boundary of the first metal silicide region and an edge of the gate electrode structure.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Stefan Flachowsky
  • Publication number: 20130049164
    Abstract: Disclosed herein are various methods of forming an anode and a cathode of a substrate diode by performing angled ion implantation processes. In one example, the method includes performing a first angled ion implantation process to form a first doped region in a bulk layer of an SOI substrate for one of the anode or the diode and, after performing the first angled ion implantation process, performing a second angled ion implantation process to form a second doped region in the bulk layer of the SOI substrate for the other of the anode and the diode, wherein said first and second angled ion implantation process are performed through the same masking layer.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Peter Baars, Thilo Scheiper
  • Publication number: 20130049139
    Abstract: Disclosed herein is a semiconductor device that includes a semiconducting substrate and a work-function adjusting layer positioned at least partially in the semiconducting substrate, the work-function adjusting layer having a middle section, opposing ends and an end region located proximate each of said opposing ends and a gate electrode positioned above the work-function adjusting layer. Each of the end regions has a maximum thickness that is at least 25% greater than an average thickness of the middle section of the work-function adjusting layer.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Steve Langdon, Stefan Flachowsky, Thilo Scheiper
  • Patent number: 8377773
    Abstract: Generally, the present disclosure is directed to methods for adjusting transistor characteristics by forming a semiconductor alloy in the channel region of the transistor during early device processing. One disclosed method includes forming an isolation structure in a semiconductor layer of a semiconductor device and in a threshold voltage adjusting semiconductor alloy formed on the semiconductor layer, the isolation structure laterally separating a first active region and a second active region.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 19, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Peter Baars
  • Publication number: 20130032901
    Abstract: Semiconductor devices are formed without full silicidation of the gates and with independent adjustment of silicides in the gates and source/drain regions. Embodiments include forming a gate on a substrate, forming a nitride cap on the gate, forming a source/drain region on each side of the gate, forming a first silicide in each source/drain region, removing the nitride cap subsequent to the formation of the first silicide, and forming a second silicide in the source/drain regions and in the gate, subsequent to removing the nitride cap. Embodiments include forming the first silicide by forming a first metal layer on the source/drain regions and performing a first RTA, and forming the second silicide by forming a second metal layer on the source/drain regions and on the gate and performing a second RTA.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Peter Javorka, Stefan Flachowsky, Thilo Scheiper
  • Patent number: 8357604
    Abstract: In sophisticated semiconductor devices, different threshold voltage levels for transistors may be set in an early manufacturing stage, i.e., prior to patterning the gate electrode structures, by using multiple diffusion processes and/or gate dielectric materials. In this manner, substantially the same gate layer stacks, i.e., the same electrode materials and the same dielectric cap materials, may be used, thereby providing superior patterning uniformity when applying sophisticated etch strategies.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 22, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Sven Beyer, Thilo Scheiper