Patents by Inventor Thomas Allan Weaver

Thomas Allan Weaver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11482344
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 25, 2022
    Assignee: TERRAPOWER, LLC
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 10785832
    Abstract: Various methods for sensing and/or heating that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some methods, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change or to pass a current for heating.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: September 22, 2020
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, David Schurig, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 10733396
    Abstract: According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 4, 2020
    Assignee: Elwha LLC
    Inventors: Daniel A. Gerrity, William Gates, Pablos Holman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, Nathan P. Myhrvold, John D. Rinaldo, Jr., Keith D. Rosema, Clarence T. Tegreene, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 10520373
    Abstract: Various sensors and arrays of sensors that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: December 31, 2019
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 10285220
    Abstract: Various heaters and arrays of heaters that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In various arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to pass a current for heating.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: May 7, 2019
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, David Schurig, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20190113399
    Abstract: Various sensors and arrays of sensors that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change.
    Type: Application
    Filed: September 4, 2018
    Publication date: April 18, 2019
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K.Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, JR.
  • Publication number: 20190071179
    Abstract: A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
    Type: Application
    Filed: October 29, 2018
    Publication date: March 7, 2019
    Applicant: Elwha LLC
    Inventors: William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Stephen L. Malaska, Nathan P. Myhrvold, Robert C. Petroski, Thomas Allan Weaver, Lowell L. Wood, JR.
  • Publication number: 20190072956
    Abstract: Described embodiments include a self-propelled vehicle, method, and system. The self-propelled vehicle includes an autonomous driving system configured to dynamically determine maneuvers operating the vehicle along a route in an automated mode without continuous input from a human driver. The vehicle includes an input device configured to receive a real-time request for a specific dynamic maneuver by the vehicle operating along the route from the human driver. The vehicle includes a decision circuit configured to select a real-time dynamic maneuver by arbitrating between (i) the received real-time request for the specific dynamic maneuver from the human driver and (ii) a real-time determination relative to the specific dynamic maneuver received from the autonomous driving system. The vehicle includes an implementation circuit configured to output the selected real-time dynamic maneuver to an operations system of the vehicle.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: ALISTAIR K. CHAN, JESSE R. CHEATHAM, III, HON WAH CHIN, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, DAVID B. TUCKERMAN, THOMAS ALLAN WEAVER
  • Patent number: 10146222
    Abstract: Described embodiments include a self-propelled vehicle, method, and system. The self-propelled vehicle includes an autonomous driving system configured to dynamically determine maneuvers operating the vehicle along a route in an automated mode without continuous input from a human driver. The vehicle includes an input device configured to receive a real-time request for a specific dynamic maneuver by the vehicle operating along the route from the human driver. The vehicle includes a decision circuit configured to select a real-time dynamic maneuver by arbitrating between (i) the received real-time request for the specific dynamic maneuver from the human driver and (ii) a real-time determination relative to the specific dynamic maneuver received from the autonomous driving system. The vehicle includes an implementation circuit configured to output the selected real-time dynamic maneuver to an operations system of the vehicle.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: December 4, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, David B. Tuckerman, Thomas Allan Weaver
  • Patent number: 10112710
    Abstract: A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 30, 2018
    Assignee: Elwha LLC
    Inventors: William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Stephen L. Malaska, Nathan P. Myhrvold, Robert C. Petroski, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Publication number: 20180307878
    Abstract: According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 25, 2018
    Inventors: Daniel A. Gerrity, William Gates, Pablos Holman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Jordin T. Kare, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, Nathan P. Myhrvold, John D. Rinaldo, JR., Keith D. Rosema, Clarence T. Tegreene, Thomas Allan Weaver, Lowell L. Wood, JR.
  • Patent number: 10074879
    Abstract: An electrochemical device (such as a battery) includes at least one electrode having a fluid surface and one or more sensors configured to detect an operating condition of the device. Fluid-directing structures may modulate flow or retain fluid in response to the sensors. An electrolyte within the device may also include an ion-transport fluid, for example infiltrated into a porous solid support.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 11, 2018
    Assignee: Deep Science, LLC
    Inventors: Geoffrey F. Deane, Bran Ferren, William Gates, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Victoria Y. H. Wood
  • Patent number: 10072503
    Abstract: A turbine blade includes a core element having a base portion, a tip portion, and an intermediate portion extending between the base portion and the tip portion. The intermediate portion includes a non-uniform cross-section and is a high-strength fiber material. The turbine blade further includes a shell disposed around the core element, and the volume between the core element and the shell forms a void.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 11, 2018
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, William David Duncan, Bran Ferren, William Gates, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, John Latham, Nathan P. Myhrvold, Stephen H. Salter, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10067006
    Abstract: Various sensors and arrays of sensors that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: September 4, 2018
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20180205203
    Abstract: Systems and methods for dynamically defending a site from lightning strikes are provided. The systems and methods involve dynamically altering electrostatic fields above the site and/or dynamically intervening in lightning.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Applicant: Deep Science, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Thomas Allan Weaver, Lowell L. Wood, Jr., Victoria Y.H. Wood
  • Patent number: 10008294
    Abstract: Illustrative embodiments provide methods and systems for migrating fuel assemblies in a nuclear fission reactor, methods of operating a nuclear fission traveling wave reactor, methods of controlling a nuclear fission traveling wave reactor, systems for controlling a nuclear fission traveling wave reactor, computer software program products for controlling a nuclear fission traveling wave reactor, and nuclear fission traveling wave reactors with systems for migrating fuel assemblies.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: June 26, 2018
    Assignee: TerraPower, LLC
    Inventors: Roderick A. Hyde, Robert C Petroski, Joshua C. Walter, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman, Ehud Greenspan
  • Patent number: 10007820
    Abstract: According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: June 26, 2018
    Assignee: Elwha LLC
    Inventors: Daniel A. Gerrity, William Gates, Pablos Holman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, Nathan P. Myhrvold, John D. Rinaldo, Jr., Keith D. Rosema, Clarence T. Tegreene, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Publication number: 20180134171
    Abstract: A system and method for management of an energy storage system for a vehicle is disclosed. The energy storage system may comprise a battery system for a vehicle such as an electric vehicle or hybrid-electric vehicle. Vehicles may be in a group or fleet. The management system may be configured to use data and information available from data sources over a network or by instrumentation/sensors for vehicle systems. Data and information could be used in a system to manage the configuration and operation of the energy storage system and components, manage/control inventory and use/life-cycle of components, and/or aggregated/analyzed in analytics function for systems and components. Predictive control of the battery system may be implemented through a management system using data sources external to the vehicle. Inventive concepts and features of the systems and methods are indicated in the specification and FIGURES.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 17, 2018
    Applicant: Elwha LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, David B. Tuckerman, Thomas Allan Weaver, Lowell L. Wood, JR.
  • Patent number: 9969490
    Abstract: A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: May 15, 2018
    Assignee: Elwha LLC
    Inventors: William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Stephen L. Malaska, Nathan P. Myhrvold, Robert C. Petroski, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9919797
    Abstract: A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 20, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Lowell L. Wood, Jr.