Patents by Inventor Thomas Feil

Thomas Feil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210005715
    Abstract: A semiconductor transistor device is described that has a source region, a body region including a vertical channel region, a drain region, a gate region laterally aside the channel region, a body contact region formed by doping, a diffusion barrier layer, and a conductive region formed of a conductive material. The body contact region electrically contacts the body region, the diffusion barrier layer being arranged in between. The doping of the body contact region is of the same conductivity type but of higher concentration than a doping of the body region. The conductive region has a contact area that forms an electrical contact to the body contact region, the contact area of the conductive region being arranged vertically above an upper end of the channel region. A method for manufacturing the semiconductor transistor device is also described.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 7, 2021
    Inventor: Thomas Feil
  • Patent number: 10868172
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate, the body region including a vertical channel region adjacent a sidewall of the gate trench; a source region in the Si substrate above the body region; a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and by a portion of the body region; an electrically conductive material in the contact trench; and a diffusion barrier structure interposed between a sidewall of the contact trench and the vertical channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and configured to increase carrier mobility within the vertical channel region. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 15, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Patent number: 10861966
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate adjacent the gate trench; a source region in the Si substrate above the body region; a diffusion barrier structure adjacent a sidewall of the gate trench, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si; and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 8, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi
  • Publication number: 20200273956
    Abstract: Disclosed is a transistor device which includes a semiconductor body having a first surface, a source region, a drift region, a body region being arranged between the source region and the drift region, a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric, and a field electrode adjacent the drift region and dielectrically insulated from the drift region by a field electrode dielectric. The field electrode includes a first layer and a second layer. The second layer includes a different conductive material as the first layer. A portion of the second layer is disposed above and directly contacts a portion of the first layer.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventor: Thomas Feil
  • Publication number: 20200273750
    Abstract: In an embodiment, a composite semiconductor substrate includes a first polymer layer and a plurality of semiconductor dies having a first surface, a second surface opposing the first surface, side faces extending between the first surface and the second surface and a first metallization structure on the first surface. Edge regions of the first surface and at least portions of the side faces are embedded in the first polymer layer. At least one metallic region of the first metallization structure is exposed from the first polymer layer. A second metallization structure is arranged on the second surface of the plurality of semiconductor dies. A second polymer layer is arranged on edge regions of the second surface of the plurality of semiconductor dies and on the first polymer layer in regions between the side faces of neighbouring ones of the plurality of semiconductor dies.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Paul Ganitzer, Carsten von Koblinski, Thomas Feil, Gerald Lackner, Jochen Mueller, Martin Poelzl, Tobias Polster
  • Patent number: 10720500
    Abstract: Disclosed is a transistor device and a method for producing a transistor device. The transistor device includes: a source region, a drift region, and a body region arranged between the source region and the drift region; a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric; and a field electrode adjacent the drift region and dielectrically insulated from the drift region by a field electrode dielectric. The field electrode includes first and second layers.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: July 21, 2020
    Assignee: Infineon Technologies Austria AG
    Inventor: Thomas Feil
  • Patent number: 10716180
    Abstract: A lamp for a headlamp is provided. The lamp includes at least two light source groups each including at least one controllable light source. The light sources of one light source group are set up for emitting yellow light. The light sources of another light source group are set up for emitting at least one of white or blue light. At least the light sources of the at least two light source groups are arranged for producing light that is collectively emittable.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: July 14, 2020
    Assignee: OSRAM Beteiligungsverwaltung GmbH
    Inventors: Thomas Feil, Daniel Weissenberger, Martin Petzold
  • Patent number: 10672664
    Abstract: In an embodiment, a method includes forming at least one trench in non-device regions of a first surface of a semiconductor wafer, the non-device regions being arranged between component positions, the component positions including device regions and a first metallization structure, applying a first polymer layer to the first surface of a semiconductor wafer such that the trenches and edge regions of the component positions are covered with the first polymer layer and such that at least a portion of the first metallization structure is uncovered by the first polymer layer, removing portions of a second surface of the semiconductor wafer, the second surface opposing the first surface, revealing portions of the first polymer layer in the non-device regions and producing a worked second surface and inserting a separation line through the first polymer layer in the non-device regions to form a plurality of separate semiconductor dies.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: June 2, 2020
    Assignee: Infineon Technologies AG
    Inventors: Paul Ganitzer, Carsten von Koblinski, Thomas Feil, Gerald Lackner, Jochen Mueller, Martin Poelzl, Tobias Polster
  • Publication number: 20200166190
    Abstract: An optical system includes optical fibers, a decoupling surface, an intersecting surface and a connecting portion. The optical fibers are arranged in at least one row. Each of the optical fibers includes a coupling surface onto which light from a light source is received. Light is directed through the optical fibers along an optical main axis. Light emitted from the optical fibers is directed onto a decoupling surface. The connecting portion is planar and is disposed between the decoupling surface and the optical fibers. The intersecting surface bounds the decoupling surface and is parallel to the optical main axis. Each of the optical fibers has an intersecting face oriented parallel to the optical main axis and parallel to the intersecting surface. The intersecting surface and the intersecting faces of the optical fibers generate a sharp outer edge of a light pattern formed by light emitted from the optical system.
    Type: Application
    Filed: November 28, 2019
    Publication date: May 28, 2020
    Inventors: Andreas Hartmann, Thomas Feil
  • Publication number: 20200127134
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate, the body region including a vertical channel region adjacent a sidewall of the gate trench; a source region in the Si substrate above the body region; a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and by a portion of the body region; an electrically conductive material in the contact trench; and a diffusion barrier structure interposed between a sidewall of the contact trench and the vertical channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and configured to increase carrier mobility within the vertical channel region. Corresponding methods of manufacture are also described.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Publication number: 20200127135
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate adjacent the gate trench; a source region in the Si substrate above the body region; a diffusion barrier structure adjacent a sidewall of the gate trench, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si; and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi
  • Publication number: 20200111896
    Abstract: A method of forming recess for a trench gate electrode includes forming a trench in a first major surface of a semiconductor substrate, the trench having a base and a side wall extending from the base to the first major surface, forming a first insulating layer on the base and the side wall of the trench, inserting a first conductive material into the trench that at least partially covers the first insulation layer to form a field plate in a lower portion of the trench, applying a second insulating layer to the first major surface and the trench such that the second insulating layer fills the trench and covers the conductive material, removing the second insulating layer from the first major surface and partially removing the second insulating layer from the trench by etching and forming a recess for a gate electrode in the second insulating layer in the trench.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Inventors: Thomas Feil, Jyotshna Bhandari, Christoph Gruber, Heimo Hofer, Ravi Keshav Joshi, Olaf Kuehn, Juergen Steinbrenner
  • Patent number: 10580888
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, a body region in the Si substrate, the body region including a channel region which extends along a sidewall of the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and a portion of the body region, the contact trench being filled with an electrically conductive material which contacts the source region at a sidewall of the contact trench and a highly doped body contact region at a bottom of the contact trench, and a diffusion barrier structure formed along the sidewall of the contact trench and disposed between the highly doped body contact region and the channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 3, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Patent number: 10573742
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, a body region in the Si substrate adjacent the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and filled with an electrically conductive material which contacts the source region at a sidewall of the contact trench and a highly doped body contact region at a bottom of the contact trench, a diffusion barrier structure formed along the sidewall of the gate trench, the diffusion barrier structure comprising alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si, and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: February 25, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi
  • Patent number: 10563833
    Abstract: A socket for a lamp includes a connection which is prepared for retaining at least one light source, an optical element which is prepared for optical coupling to the light source, and a bearing. The optical element is movably mounted by the bearing for adaptation to a position of a light exit unit of a connectable light source.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: February 18, 2020
    Assignee: OSRAM BETEILIGUNGSVERWALTUNG GmbH
    Inventors: Thomas Feil, Daniel Weissenberger
  • Publication number: 20200052109
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, a body region in the Si substrate, the body region including a channel region which extends along a sidewall of the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and a portion of the body region, the contact trench being filled with an electrically conductive material which contacts the source region at a sidewall of the contact trench and a highly doped body contact region at a bottom of the contact trench, and a diffusion barrier structure formed along the sidewall of the contact trench and disposed between the highly doped body contact region and the channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Publication number: 20200052110
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, a body region in the Si substrate adjacent the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and filled with an electrically conductive material which contacts the source region at a sidewall of the contact trench and a highly doped body contact region at a bottom of the contact trench, a diffusion barrier structure formed along the sidewall of the gate trench, the diffusion barrier structure comprising alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si, and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi
  • Patent number: 10529845
    Abstract: In an embodiment, a semiconductor device includes a semiconductor body having a field effect transistor device with an active region and an edge termination region that surrounds the active region on all sides. The active region includes a first serpentine trench in the semiconductor body, a first field plate in the first serpentine trench, a second serpentine trench in the semiconductor body, and a second field plate in the second serpentine trench. The first serpentine trench is separate and laterally spaced apart from the second serpentine trench.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: January 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Ashita Mirchandani, Thomas Feil, Maximilian Roesch, Britta Wutte
  • Patent number: 10529811
    Abstract: According to an embodiment of a power semiconductor device, the device includes a semiconductor body coupled to a first load terminal and a second load terminal and configured to conduct a load current between the first load terminal and the second load terminal. A trench extends into the semiconductor body along an extension direction and includes an insulator. A first electrode structure included in the trench is configured to control the load current. A second electrode structure included in the trench is arranged separately and electrically insulated from the first electrode structure. The first electrode structure and the second electrode structure are spatially displaced from each other along the extension direction such that they do not have a common extension range along the extension direction. Each of the first electrode structure and the second electrode structure is made of a metal.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: January 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Feil, Michael Hutzler
  • Publication number: 20190326277
    Abstract: Disclosed is an electronic circuit. The electronic circuit includes a first transistor device and a clamping circuit. The first transistor device includes a control node and a load path between a first load node and a second load node, and the clamping circuit includes a second transistor device and a drive circuit. The second transistor device includes a control node and a load path connected in parallel with the load path of the first transistor device, and the drive circuit includes a capacitor coupled between the second load node of the first transistor device, and a first resistor coupled between the control node of the second transistor device and a further circuit node.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 24, 2019
    Inventors: Thomas Feil, Gerhard Noebauer