Patents by Inventor Thomas H. Turpen

Thomas H. Turpen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7192740
    Abstract: The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular advantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: March 20, 2007
    Assignee: Large Scale Biology Corporation
    Inventors: Jonathan Donson, William O. Dawson, George L. Grantham, Thomas H. Turpen, Ann Myers Turpen, Stephen J. Garger, Jr., Laurence K. Grill
  • Patent number: 7084256
    Abstract: A polypeptide self-antigen useful in a tumor-specific vaccine mimics one or more epitopes of an antigen uniquely expressed by cells of the tumor. The polypeptide is preferably produced in a plant that has been transformed or transfected with nucleic acid encoding the polypeptide and is obtainable from the plant in correctly folded, preferably soluble form without a need for denaturation and renaturation. This plant-produced polypeptide is immunogenic without a need for exogenous adjuvants or other immunostimulatory materials. The polypeptide is preferably an scFv molecule that bears the idiotype of the surface immunoglobulin of a non-Hodgkin's (or B cell) lymphoma. Upon administration to a subject with lymphoma, the plant-produced, tumor-unique scFv polypeptide induces an idiotype-specific antibody or cell-mediated immune response against the lymphoma.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 1, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Alison A. McCormick, Daniel Tusé, Stephen J. Reinl, John A. Lindbo, Thomas H. Turpen
  • Patent number: 7033835
    Abstract: The present invention relates to foreign peptide sequences fused to recombinant plant viral structural proteins and a method of their production. Fusion proteins are economically synthesized in plants at high levels by biologically contained tobamoviruses. The fusion proteins of the invention have many uses. Such uses include use as antigens for inducing the production of antibodies having desired binding properties, e.g., protective antibodies, or for use as vaccine antigens for the induction of protective immunity, including immunity against parasitic infections.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: April 25, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Thomas H. Turpen, Stephen J. Reinl, Laurence K. Grill
  • Patent number: 7034128
    Abstract: A method for extracting proteins from the intercellular space of plants is provided. The method is applicable to the large scale isolation of many active proteins of interest synthesized by plant cells. The method may be used commercially to recover recombinantly produced proteins from plant hosts thereby making the large scale use of plants as sources for recombinant protein production feasible.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: April 25, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Thomas H. Turpen, Stephen J. Garger, Michael J. McCulloch, Terri I. Cameron, Michelle L. Samonek-Potter, R. Barry Holtz
  • Patent number: 6890748
    Abstract: The invention relates to ?-galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human ? galactosidase nucleotide sequences.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: May 10, 2005
    Assignee: Large Scale Biology Corporation
    Inventors: Stephen J. Garger, Thomas H. Turpen, Monto H. Kumagai
  • Patent number: 6887696
    Abstract: The invention relates to ?-galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human ? galactosidase nucleotide sequences.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: May 3, 2005
    Assignee: Large Scale Biology Corporation
    Inventors: Stephen J. Garger, Thomas H. Turpen, Monto H. Kumagai
  • Patent number: 6852846
    Abstract: A novel method of over expressing genes in plants is provided. This method is based on the RNA amplification properties of plus strand RNA viruses of plants. A chimeric multicistronic gene is constructed containing a plant promoter, viral replication origins, a viral movement protein gene, and one or more foreign genes under control of viral subgenomic promoters. Plants containing one or more of these recombinant RNA transcripts are inoculated with helper virus. In the presence of helper virus, the recombinant transcripts are replicated producing high levels of foreign gene RNA.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: February 8, 2005
    Assignee: Large Scale Biology Corporation
    Inventor: Thomas H. Turpen
  • Patent number: 6846968
    Abstract: The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human ? galactosidase nucleotide sequences.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: January 25, 2005
    Assignee: Large Scale Biology Corporation
    Inventors: Robert L. Erwin, Laurence K. Grill, Gregory P. Pogue, Thomas H. Turpen, Monto H. Kumagai
  • Patent number: 6841659
    Abstract: A method for extracting proteins from the intercellular space of plants is provided. The method is applicable to the large scale isolation of many active proteins of interest synthesized by plant cells. The method may be used commercially to recover recombinantly produced proteins from plant hosts thereby making the large scale use of plants as sources for recombinant protein production feasible.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: January 11, 2005
    Assignee: Large Scale Biology Corporation
    Inventors: Thomas H. Turpen, Stephen J. Garger, Michael J. McCulloch, Terri I. Cameron, Michelle L. Samonek-Potter, R. Barry Holtz
  • Publication number: 20040234516
    Abstract: The invention relates to &agr;-galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human a galactosidase nucleotide sequences.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 25, 2004
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: Stephen J. Garger, Thomas H. Turpen, Monto H. Kumagai
  • Publication number: 20040175694
    Abstract: The present invention relates to foreign peptide sequences fused to recombinant plant viral structural proteins and a method of their production. Fusion proteins are economically synthesized in plants at high levels by biologically contained tobamoviruses. The fusion proteins of the invention have many uses. Such uses include use as antigens for inducing the production of antibodies having desired binding properties, e.g., protective antibodies, or for use as vaccine antigens for the induction of protective immunity, including immunity against parasitic infections.
    Type: Application
    Filed: August 20, 2003
    Publication date: September 9, 2004
    Applicant: Biosource Technologies, Inc.
    Inventors: Thomas H. Turpen, Stephen J, Reinl, Laurence K. Grill
  • Publication number: 20040171813
    Abstract: The present invention features a method for isolating and purifying proteins and peptides of interest from a plant host, which is applicable on a large scale. Moreover, the present invention provides a more efficient method for isolating proteins and peptides of interest than those methods described in the prior art.
    Type: Application
    Filed: April 20, 2004
    Publication date: September 2, 2004
    Inventors: Stephen J. Garger, R. Barry Holtz, Michael J. McCulloch, Thomas H. Turpen
  • Patent number: 6740740
    Abstract: The present invention features a method for isolating and purifying proteins and peptides of interest from a plant host, which is applicable on a larger scale. Moreover, the present invention provides a more efficient method for isolating proteins and peptides of interest than those methods described in the prior art. In general, the present method of isolating proteins and peptides of interest comprises the steps of homogenizing a plant to produce a green juice, adjusting the pH of and heating the green juice, separating the target protein/peptide from other components of the green juice by one or more cycles of centrifugation and/or resuspension, and finally purifying proteins and peptides by such procedures as chromatography and/or salt precipitation.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: May 25, 2004
    Assignee: Large Scale Biology Corporation
    Inventors: Stephen J. Garger, R. Barry Holtz, Michael J. McCulloch, Thomas H. Turpen
  • Publication number: 20040093646
    Abstract: The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human &agr; galactosidase nucleotide sequences.
    Type: Application
    Filed: October 9, 2003
    Publication date: May 13, 2004
    Inventors: Robert L. Erwin, Laurence K. Grill, Gregory P. Pogue, Thomas H. Turpen, Monto H. Kumagai
  • Publication number: 20040064855
    Abstract: The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human &agr; galactosidase nucleotide sequences.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 1, 2004
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: Gregory P. Pogue, Thomas H. Turpen, Monto H. Kumagai, Robert L. Erwin, Laurence K. Grill
  • Publication number: 20040049025
    Abstract: The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular adivantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants.
    Type: Application
    Filed: October 24, 2002
    Publication date: March 11, 2004
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: Jon Donson, William O. Dawson, George L. Grantham, Thomas H. Turpen, Ann Myers Turpen, Stephen J. Garger, Laurence K. Grill
  • Publication number: 20040047923
    Abstract: A method for extracting proteins from the intercellular space of plants is provided. The method is applicable to the large scale isolation of many active proteins of interest synthesized by plant cells. The method may be used commercially to recover recombinantly produced proteins from plant hosts thereby making the large scale use of plants as sources for recombinant protein production feasible.
    Type: Application
    Filed: August 1, 2003
    Publication date: March 11, 2004
    Inventors: Thomas H. Turpen, Stephen J. Garger, Michael J. McCulloch, Terri I. Cameron, Michelle L. Samonek-Potter, R. Barry Holtz
  • Publication number: 20040023281
    Abstract: The invention relates to &agr;-galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human &agr; galactosidase nucleotide sequences.
    Type: Application
    Filed: June 23, 2003
    Publication date: February 5, 2004
    Inventors: Thomas H. Turpen, Monto H. Kumagai, Gregory P. Pogue, Robert L. Erwin, Laurence K. Grill
  • Publication number: 20040016021
    Abstract: The invention relates to &agr;-galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human &agr; galactosidase nucleotide sequences.
    Type: Application
    Filed: June 23, 2003
    Publication date: January 22, 2004
    Inventors: Thomas H. Turpen, Gregory P. Pogue, Robert L. Erwin, Laurence K. Grill
  • Patent number: 6660500
    Abstract: The present invention relates to foreign peptide sequences fused to recombinant plant viral structural proteins and a method of their production. Fusion proteins are economically synthesized in plants at high levels by biologically contained tobamoviruses. The fusion proteins of the invention have many uses. Such uses include use as antigens for inducing the production of antibodies having desired binding properties, e.g., protective antibodies, or for use as vaccine antigens for the induction of protective immunity, including immunity against parasitic infections.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: December 9, 2003
    Assignee: Large Scale Biology Corporation
    Inventors: Thomas H. Turpen, Stephen J. Reinl, Laurence K. Grill