Patents by Inventor Thomas H. Turpen

Thomas H. Turpen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6617435
    Abstract: A method for extracting proteins from the intercellular space of plants is provided. The method is applicable to the large scale isolation of many active proteins of interest synthesized by plant cells. The method may be used commercially to recover recombinantly produced proteins from plant hosts thereby making the large scale use of plants as sources for recombinant protein production feasible.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 9, 2003
    Assignee: Large Scale Biology Corporation
    Inventors: Thomas H. Turpen, Stephen J. Garger, Michael J. McCulloch, Terri I. Cameron, Michelle L. Samonek-Potter, R. Barry Holtz
  • Publication number: 20030150019
    Abstract: The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular adivantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants.
    Type: Application
    Filed: October 24, 2002
    Publication date: August 7, 2003
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: Thomas H. Turpen, Ann Myers Turpen, Stephen J. Garger, Laurence K. Grill, Jonathan Donson, William O. Dawson, George L. Granthan
  • Publication number: 20030106095
    Abstract: The invention relates to &agr;-galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human &agr; galactosidase nucleotide sequences.
    Type: Application
    Filed: March 20, 2002
    Publication date: June 5, 2003
    Inventors: Stephen J. Garger, Thomas H. Turpen, Monto H. Kumagai
  • Publication number: 20030097683
    Abstract: This invention is directed to a plus strand RNA viral vector for transformation of a host organism with a foreign RNA, and expression of said foreign RNA. The foreign RNA is inserted into an infective RNA viral segment containing cis-acting viral replication elements, and allowed to infect the host organism. The RNA vector is modified to obtain infectivity by including an intervening sequence between the cap and the 5′ end. The modified RNA is able to tolerate the exogenous RNA segment without disrupting the replication of the modified RNA, in the absence of a trans-acting viral replication element in a single component plant virus host cell.
    Type: Application
    Filed: July 18, 2002
    Publication date: May 22, 2003
    Applicant: Large Scale Biology Corporation
    Inventors: John A. Lindbo, Gregory P. Pogue, Thomas H. Turpen
  • Publication number: 20030073209
    Abstract: A method for extracting proteins from the intercellular space of plants is provided. The method is applicable to the large scale isolation of many active proteins of interest synthesized by plant cells. The method may be used commercially to recover recombinantly produced proteins from plant hosts thereby making the large scale use of plants as sources for recombinant protein production feasible.
    Type: Application
    Filed: April 8, 2002
    Publication date: April 17, 2003
    Inventors: Thomas H. Turpen, Stephen J. Garger, Michael J. McCulloch, Terri I. Cameron, Michelle L. Samonek-Potter, R. Barry Holtz
  • Publication number: 20030049813
    Abstract: The present invention features a method for isolating and purifying proteins and peptides of interest from a plant host, which is applicable on a large scale. Moreover, the present invention provides a more efficient method for isolating proteins and peptides of interest than those methods described in the prior art.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 13, 2003
    Inventors: Stephen J. Garger, R. Barry Holtz, Michael J. McCulloch, Thomas H. Turpen
  • Publication number: 20030044420
    Abstract: A polypeptide self-antigen useful in a tumor-specific vaccine mimics one or more epitopes of an antigen uniquely expressed by cells of the tumor. The polypeptide is preferably produced in a plant that has been transformed or transfected with nucleic acid encoding the polypeptide and is obtainable from the plant in correctly folded, preferably soluble form without a need for denaturation and renaturation. This plant-produced polypeptide is immunogenic without a need for exogenous adjuvants or other immunostimulatory materials. The polypeptide is preferably an scFv molecule that bears the idiotype of the surface immunoglobulin of a non-Hodgkin's (or B cell) lymphoma. Upon administration to a subject with lymphoma, the plant-produced, tumor-unique scFv polypeptide induces an idiotype-specific antibody or cell-mediated immune response against the lymphoma.
    Type: Application
    Filed: February 8, 2002
    Publication date: March 6, 2003
    Inventors: Alison A. McCormick, Daniel Tuse, Stephen J. Reinl, John A. Lindbo, Thomas H. Turpen
  • Publication number: 20030044417
    Abstract: A polypeptide self-antigen useful in a tumor-specific vaccine mimics one or more epitopes of an antigen uniquely expressed by cells of the tumor. The polypeptide is preferably produced in a plant that has been transformed or transfected with nucleic acid encoding the polypeptide and is obtainable from the plant in correctly folded, preferably soluble form without a need for denaturation and renaturation. This plant-produced polypeptide is immunogenic without a need for exogenous adjuvants or other immunostimulatory materials. The polypeptide is preferably an scFv molecule that bears the idiotype of the surface immunoglobulin of a non-Hodgkin's (or B cell) lymphoma. Upon administration to a subject with lymphoma, the plant-produced, tumor-unique scFv polypeptide induces an idiotype-specific antibody or cell-mediated immune response against the lymphoma.
    Type: Application
    Filed: March 31, 2000
    Publication date: March 6, 2003
    Inventors: Alison A. McCormick, Daniel Tuse, Stephen J. Reinl, John A. Lindbo, Thomas H. Turpen
  • Publication number: 20030039659
    Abstract: A polypeptide self-antigen useful in a tumor-specific vaccine mimics one or more epitopes of an antigen uniquely expressed by cells of the tumor. The polypeptide is preferably produced in a plant that has been transformed or transfected with nucleic acid encoding the polypeptide and is obtainable from the plant in correctly folded, preferably soluble form without a need for denaturation and renaturation. This plant-produced polypeptide is immunogenic without a need for exogenous adjuvants or other immunostimulatory materials. The polypeptide is preferably an scFv molecule that bears the idiotype of the surface immunoglobulin of a non-Hodgkin's (or B cell) lymphoma. Upon administration to a subject with lymphoma, the plant-produced, tumor-unique scFv polypeptide induces an idiotype-specific antibody or cell-mediated immune response against the lymphoma.
    Type: Application
    Filed: February 8, 2002
    Publication date: February 27, 2003
    Inventors: Alison A. McCormick, Daniel Tuse, Stephen J. Reinl, John A. Lindbo, Thomas H. Turpen
  • Publication number: 20030035807
    Abstract: A polypeptide self-antigen useful in a tumor-specific vaccine mimics one or more epitopes of an antigen uniquely expressed by cells of the tumor. The polypeptide is preferably produced in a plant that has been transformed or transfected with nucleic acid encoding the polypeptide and is obtainable from the plant in correctly folded, preferably soluble form without a need for denaturation and renaturation. This plant-produced polypeptide is immunogenic without a need for exogenous adjuvants or other immunostimulatory materials. The polypeptide is preferably an scFv molecule that bears the idiotype of the surface immunoglobulin of a non-Hodgkin's (or B cell) lymphoma. Upon administration to a subject with lymphoma, the plant-produced, tumor-unique scFv polypeptide induces an idiotype-specific antibody or cell-mediated immune response against the lymphoma.
    Type: Application
    Filed: February 8, 2002
    Publication date: February 20, 2003
    Inventors: Alison A. McCormick, Daniel Tuse, Stephen J. Reinl, John A. Lindbo, Thomas H. Turpen
  • Publication number: 20020168769
    Abstract: This invention is directed to a plus strand RNA viral vector for transformation of a host organism with a foreign RNA, and expression of said foreign RNA. The foreign RNA is inserted into an infective RNA viral segment containing cis-acting viral replication elements, and allowed to infect the host organism. The RNA vector is modified to obtain infectivity by including an intervening sequence between the cap and the 5═ end. The modified RNA is able to tolerate the exogeneous RNA segment without disrupting the replication of the modified RNA, in the absence of a trans-acting viral replication element in a single component plant virus host cell.
    Type: Application
    Filed: September 7, 2001
    Publication date: November 14, 2002
    Inventors: John A. Lindbo, Gregory P. Pogue, Thomas H. Turpen
  • Publication number: 20020164803
    Abstract: This invention is directed to a plus strand RNA viral vector for transformation of a host organism with a foreign RNA, and expression of said foreign RNA. The foreign RNA is inserted into an infective RNA viral segment containing cis-acting viral replication elements, and allowed to infect the host organism. The RNA vector is modified to obtain infectivity by not incorporating a cap at the 5′ end of the genome. The modified RNA is able to tolerate the exogenous RNA segment without disrupting the replication of the modified RNA, in the absence of a trans-acting viral replication element in a single component plant virus host cell.
    Type: Application
    Filed: September 7, 2001
    Publication date: November 7, 2002
    Inventors: John A. Lindbo, Gregory P. Pogue, Thomas H. Turpen
  • Patent number: 6462255
    Abstract: A novel method of over expressing genes in plants is provided. This method is based on the RNA amplification properties of plus strand RNA viruses of plants. A chimeric multicistronic gene is constructed containing a plant promoter, viral replication origins, a viral movement protein gene, and one or more foreign genes under control of viral subgenomic promoters. Plants containing one or more of these recombinant RNA transcripts are inoculated with helper virus. In the presence of helper virus recombinant transcripts are replicated producing high levels of foreign gene RNA. Sequences are provided for the high level expression of the enzyme chloramphenicol acetyltransferase in tobacco plants by replicon RNA amplification with helper viruses and movement protein genes derived from the tobamovirus group.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: October 8, 2002
    Assignee: Large Scale Biology Corporation
    Inventor: Thomas H. Turpen
  • Publication number: 20020144308
    Abstract: A novel method of over expressing genes in plants is provided. This method is based on the RNA amplification properties of plus strand RNA viruses of plants. A chimeric multicistronic gene is constructed containing a plant promoter, viral replication origins, a viral movement protein gene, and one or more foreign genes under control of viral subgenomic promoters. Plants containing one or more of these recombinant RNA transcripts are inoculated with helper virus. In the presence of helper virus recombinant transcripts are replicated producing high levels of foreign gene RNA.
    Type: Application
    Filed: August 14, 2001
    Publication date: October 3, 2002
    Inventor: Thomas H. Turpen
  • Publication number: 20020138873
    Abstract: The present invention features a multiple component RNA vector system, which consists of RNA virus-derived RNA replicons and helper viruses. The present invention further features a method for producing foreign RNAs, effector RNAs, proteins or peptides in plants using the multiple component RNA vector system. Moreover, the present invention provides a method for stable and systemic production of foreign RNAs, effector RNAs, proteins and peptides using the multiple component RNA vector system.
    Type: Application
    Filed: January 24, 2002
    Publication date: September 26, 2002
    Inventors: Dennis J. Lewandowski, William O. Dawson, Thomas H. Turpen, Gregory P. Pogue
  • Patent number: 6448046
    Abstract: The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular advantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 10, 2002
    Assignee: Large Scale Biology Corporation
    Inventors: Jon Donson, William O. Dawson, George L. Grantham, Thomas H. Turpen, Ann M. Turpen, Stephen J. Garger, Laurence K. Grill
  • Patent number: 6441147
    Abstract: A method for extracting proteins from the intercellular space of plants is provided. The method is applicable to the large scale isolation of many active proteins of interest synthesized by plant cells. The method may be used commercially to recover recombinantly produced proteins from plant hosts thereby making the large scale use of plants as sources for recombinant protein production feasible.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Large Scale Biology Corporation
    Inventors: Thomas H. Turpen, Stephen J. Garger, Michael J. McCulloch, Terri I. Cameron, Michelle L. Samonek-Potter, R. Barry Holtz
  • Publication number: 20020107387
    Abstract: The present invention relates to foreign peptide sequences fused to recombinant plant viral structural proteins and a method of their production. Fusion proteins are economically synthesized in plants at high levels by biologically contained tobamoviruses. The fusion proteins of the invention have many uses. Such uses include use as antigens for inducing the production of antibodies having desired binding properties, e.g., protective antibodies, or for use as vaccine antigens for the induction of protective immunity, including immunity against parasitic infections.
    Type: Application
    Filed: January 5, 2001
    Publication date: August 8, 2002
    Inventors: Thomas H. Turpen, Stephen J. Reinl, Laurence K. Grill
  • Publication number: 20020104123
    Abstract: A novel method of over expressing genes in plants is provided. This method is based on the RNA amplification properties of plus strand RNA viruses of plants. A chimeric multicistronic gene is constructed containing a plant promoter, viral replication origins, a viral movement protein gene, and one or more foreign genes under control of viral subgenomic promoters. Plants containing one or more of these recombinant RNA transcripts are inoculated with helper virus. In the presence of helper virus recombinant transcripts are replicated producing high levels of foreign gene RNA.
    Type: Application
    Filed: August 14, 2001
    Publication date: August 1, 2002
    Inventor: Thomas H. Turpen
  • Publication number: 20020088024
    Abstract: The invention relates to -galactosidase truncated at the carboxy terminus and the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which transgenic tobacco plants express recombinant expression constructs comprising human glucocerebrosidase nucleotide sequences. The invention is also demonstrated by working examples in which transfected tobacco plants express recombinant viral expression constructs comprising human &agr; galactosidase nucleotide sequences.
    Type: Application
    Filed: November 13, 2001
    Publication date: July 4, 2002
    Inventors: Stephen J. Garger, Thomas H. Turpen, Monto H. Kumagai