Patents by Inventor Thomas J. Dougherty

Thomas J. Dougherty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200367767
    Abstract: A pulse transit time is measured non-invasively and used to calculate a blood pressure value. A method of determining one or more blood pressure values includes propagating an alternating drive current through a thorax of a subject via electrodes located on a wrist-worn device. Resulting voltage levels of the subject are sensed by the wrist-worn device. The voltage levels are processed to detect when a volume of blood is ejected from the left ventricle. Output from a pulse arrival sensor coupled to the wrist-worn device is processed to detect when a blood pressure pulse generated by ejection of the volume of blood from the left ventricle arrives at the wrist. A pulse transit time (PTT) for transit of the blood pressure pulse from the left ventricle to the wrist is calculated. One or more blood pressure values for the subject are determined based on the PTT.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi K. Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
  • Publication number: 20200367760
    Abstract: Methods and devices for obtaining a blood pressure measurement of a subject measure a transit time of a blood pulse of the subject. A method includes sensing, with a pulse ejection sensor of a wrist-worn device, ejection of blood from the left ventricle. Arrival of a resulting blood pressure pulse at the wrist is sensed via a pulse arrival sensor of the wrist-worn device. A transit time of the blood pressure pulse from the left ventricle to the wrist is determined. A relative blood pressure value of the subject is determined based on the transit time. A reference absolute blood pressure value associated with the relative blood pressure value is received. An absolute blood pressure value for the relative blood pressure value is determined based on the reference absolute blood pressure value and the relative blood pressure value.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 26, 2020
    Inventors: Erno H. Klaassen, Wren Nancy Dougherty, Richard C. Kimoto, Ravi K. Narasimhan, Thomas J. Sullivan, Stephen J. Waydo, Todd K. Whitehurst, Santiago Quijano, Derek Park-Shing Young, Zijing Zeng
  • Publication number: 20200345298
    Abstract: In some implementations, a mobile device can adjust an alarm setting based on the sleep onset latency duration detected for a user of the mobile device. For example, sleep onset latency can be the amount of time it takes for the user to fall asleep after the user attempts to go to sleep (e.g., goes to bed). The mobile device can determine when the user intends or attempts to go to sleep based on detected sleep ritual activities. Sleep ritual activities can include those activities a user performs in preparation for sleep. The mobile device can determine when the user is asleep based on detected sleep signals (e.g., biometric data, sounds, etc.). In some implementations, the mobile device can determine recurring patterns of long or short sleep onset latency and present suggestions that might help the user sleep better or feel more rested.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Applicant: Apple Inc.
    Inventors: Roy J. Raymann, Wren N. Dougherty, Divya Nag, Deborah M. Lambert, Stephanie Greer, Thomas R. Gruber
  • Patent number: 10818441
    Abstract: An energy storage device can have a first graphite film, a second graphite film and an electrode divider ring between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device can include providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 27, 2020
    Assignee: Maxwell Technologies, Inc.
    Inventors: Porter Mitchell, Thomas J. Dougherty
  • Patent number: 10779738
    Abstract: Wrist-worn devices and related methods measure a pulse transit time non-invasively and calculate a blood pressure value using the pulse transit time. A wrist-worn device include a wrist-worn elongate band, at least four EKG or ICG electrodes coupled to the wrist-worn device for detecting a ventricular ejection of a heart, a photo-plethysmogram (PPG) sensor coupled to the wrist-worn device for detecting arrival of a blood pressure pulse at the user's wrist, and a controller configured to calculate a pulse transit time (PTT) for the blood pressure pulse. The controller calculates one or more blood pressure values for the user based on the PTT.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 22, 2020
    Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
  • Patent number: 10772512
    Abstract: The present invention provides non-invasive devices, methods, and systems for determining a pressure of blood within a cardiovascular system of a user, the cardiovascular system including a heart and the user having a wrist covered by skin. More particularly, the present invention discloses a variety of wrist-worn devices having a variety of sensors configured to non-invasively engage the skin on the wrist of the user for sensing a variety of user signals from the cardiovascular system of the user. Generally, approaches disclosed herein may passively track blood pressure values without any interaction required on the part of the user or may allow for on demand or point measurements of blood pressure values by having a user actively interact with the sensors of the wrist-worn device.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 15, 2020
    Inventors: Erno H. Klaassen, Wren Nancy Dougherty, Richard C. Kimoto, Ravi Narasimhan, Thomas J. Sullivan, Stephen J. Waydo, Todd K. Whitehurst, Santiago Quijano, Derek Park-Shing Young, Zijing Zeng
  • Patent number: 10758173
    Abstract: In some implementations, a mobile device can adjust an alarm setting based on the sleep onset latency duration detected for a user of the mobile device. For example, sleep onset latency can be the amount of time it takes for the user to fall asleep after the user attempts to go to sleep (e.g., goes to bed). The mobile device can determine when the user intends or attempts to go to sleep based on detected sleep ritual activities. Sleep ritual activities can include those activities a user performs in preparation for sleep. The mobile device can determine when the user is asleep based on detected sleep signals (e.g., biometric data, sounds, etc.). In some implementations, the mobile device can determine recurring patterns of long or short sleep onset latency and present suggestions that might help the user sleep better or feel more rested.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 1, 2020
    Assignee: Apple Inc.
    Inventors: Roy J. Raymann, Wren N. Dougherty, Divya Nag, Deborah M. Lambert, Stephanie Greer, Thomas R. Gruber
  • Publication number: 20190359899
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190338203
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190320972
    Abstract: In some implementations, a provisional determination that a user of a first device is awake may be based on data indicating that the first device is being used. Also, sleep sounds associated with a human sleeping may be detected, and sleep sound information corresponding to the user may be obtained. Next, the detected sleep sounds may be compared to the sleep sound information, and a determination may be made as to whether the detected sleep sounds are attributable to the user based on the comparison of the detected sleep sounds and the sleep sound information. In addition, the provisional determination that the user is awake may be revised to indicate that the user is sleeping in response to a determination that the detected sleep sounds are being performed by the user in order to provide a more accurate sleep determination for the user.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Applicant: Apple Inc.
    Inventors: Guy L. Tribble, Roy J. Raymann, Wren N. Dougherty, Divya Nag, Deborah M. Lambert, Stephanie M. Greer, Thomas R. Gruber
  • Patent number: 10414991
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
  • Patent number: 10383568
    Abstract: In some implementations, a computing device can confirm a sleep determination for a user based on secondary indicia of user activity. For example, the computing device can be a user's primary computing device. The primary device can predict and/or determine when the user is sleeping based on the user's use (e.g., primary indicia), or lack of use, of the primary device. After the primary device determines that the user is sleeping, the primary device can confirm that the user is asleep based on secondary indicia of user activity. In some implementations, the secondary indicia can include user activity reported to the primary computing device by other secondary computing devices (e.g., a second user device, a household appliance, etc.). In some implementations, the secondary indicia can include user activity detected by sensors of the primary computing device (e.g., sound, light, movement, etc.).
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: August 20, 2019
    Assignee: Apple Inc.
    Inventors: Guy L. Tribble, Roy J. Raymann, Wren N. Dougherty, Divya Nag, Deborah M. Lambert, Stephanie Greer, Thomas R. Gruber
  • Publication number: 20190213060
    Abstract: In some implementations, a computing device may detect that a user of the computing device intends to sleep. The computing device may cause a reminder notification to be presented on a display of the computing device that prompts the user to prepare one or more secondary devices for sleep. The computing device may obtain, for each of the one or more secondary devices, a desired state for sleep specified by the user. The computing device may cause, for each of the one or more secondary devices, a current state to change to the desired state for sleep. In some implementations, the user activities may be detected by receiving sensor data from one or more sensor devices of the computing device and identifying the user activities based on the received sensor data. In some implementations, the computing device may automatically change the current state to the desired state for sleep.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Applicant: Apple Inc.
    Inventors: Roy J. Raymann, Wren N. Dougherty, Divya Nag, Deborah M. Lambert, Stephanie M. Greer, Thomas R. Gruber
  • Publication number: 20190139711
    Abstract: An energy storage device can have a first graphite film, a second graphite film and an electrode divider ring between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device can include providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
    Type: Application
    Filed: October 5, 2018
    Publication date: May 9, 2019
    Inventors: Porter Mitchell, Thomas J. Dougherty
  • Patent number: 10096432
    Abstract: An energy storage device can have a first graphite film, a second graphite film and an electrode divider ring between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device can include providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 9, 2018
    Assignee: Maxwell Technologies, Inc.
    Inventors: Porter Mitchell, Thomas J. Dougherty
  • Patent number: 10044074
    Abstract: Provided battery systems include a plurality of battery electronic control units, each associated with a battery pack of a plurality of battery packs. Each battery electronic control unit is adapted to acquire analog current measurements of the associated battery pack and to convert the acquired analog current measurements to a digital value such that the plurality of battery electronic control units produce a plurality of digital values. The system may sum the digital values, or may process pulse-width modulated signals, analog signals and so forth. A battery system electronic control unit is adapted to receive and monitor the plurality of digital values and to determine a total battery system current value based on the received plurality of digital values.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 7, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Craig W. Rigby, Thomas J. Dougherty, Chih Yu Chen
  • Patent number: 9627908
    Abstract: This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor. In another aspect, a switch is between the capacitor and the first terminal. In another aspect, a current limiter extends between the first terminal and the capacitor.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 18, 2017
    Assignee: Maxwell Technologies, Inc.
    Inventors: Ilya Kaminsky, Robert Shaw Lynds, Mikael Setterberg, Priya Bendale, Ha Q. Hung, Thomas J. Dougherty, John Miller, Jeremy Cowperthwaite
  • Patent number: 9620827
    Abstract: A battery system includes a plurality of electrochemical cells provided within a housing. The battery system also includes a thermal management system configured to provide at least one of heating or cooling to the electrochemical cells. The thermal management system includes a solid state coating having a first metal and a second metal different from the first metal. The solid state coating is configured to pass a current therethrough to create a temperature differential across a first surface of the solid state coating and a second surface of the solid state coating to provide the at least one of heating or cooling to the cells.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 11, 2017
    Assignee: Johnson Controls—SAFT Advanced Power Solutions LLC
    Inventors: Gary P. Houchin-Miller, James S. Symanski, Craig W. Rigby, Thomas J. Dougherty
  • Patent number: 9496557
    Abstract: A current collector for an electrochemical cell includes a member having an outer member and an inner member coupled to the outer member by a plurality of flexible arms configured to allow the inner member to move relative to the outer member.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: November 15, 2016
    Assignee: Johnson Controls -SAFT Advanced Power Solutions LLC
    Inventors: Jason D. Fuhr, Gerald K. Bowen, John P. Dinkleman, Thomas J. Dougherty, Waterloo Tsutsui, Christopher M. Bonin
  • Patent number: 9172067
    Abstract: An electrochemical cell includes a can having a first end and a second end and a first element provided within the can and including an electrode. The cell also includes a first terminal integrally formed as a part of the can and extending from one of the first or second ends. The cell further includes a terminal assembly directly coupled to the first element and including a stud configured to act as a second terminal. The first end includes a boss that defines an aperture through which the stud extends, wherein the boss at least partially surrounds the stud and a bushing coupled to the stud.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 27, 2015
    Assignee: JOHSON CONTROLS-SAFT ADVANCED POWER SOLUTIONS LLC
    Inventors: Thomas J. Dougherty, Steven J. Wood, John P. Dinkelman, Dale B. Trester, Gerald K. Bowen, Gary P. Houchin-Miller