Patents by Inventor Thomas J. Nelson

Thomas J. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10947432
    Abstract: A method of making magnetizable abrasive particles includes: moistening the outer surfaces of ceramic particles with waterglass to provide moistened ceramic particles. Magnetizable particles are contacted with the moistened ceramic particles to provide powder-coated ceramic particles. The powder-coated ceramic particles are heated to at least a temperature sufficient to bond the magnetizable particles of the powder-coated ceramic particles to the respective ceramic particles thereby providing the magnetizable abrasive particles. On a respective basis, each magnetizable abrasive particle comprises a respective ceramic particle having a magnetizable particles bonded thereto.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 16, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Anderson, Thomas J. Nelson, Mark A. Lukowski, Louis S. Moren, Don V. West
  • Publication number: 20200398402
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are disposed at least 70 percent of regularly-spaced points along an arithmetic spiral pattern extending outwardly toward the outer circumference. Each one of the triangular abrasive platelets has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of each of the triangular abrasive platelets disposed facing and proximate to the disc backing, and is lengthwise aligned within 10 degrees of being tangent to the arithmetic spiral pattern. Methods of making and using the coated abrasive disc are also disclosed.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 24, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200391352
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. At least 70 percent of the intersections have one of the abrasive elements disposed thereat. Each of the abrasive elements has two triangular abrasive platelets. Each one of the triangular abrasive platelets has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing. The abrasive elements are arranged such that the triangular abrasive platelets in orthogonally adjacent abrasive elements have a Z-axis rotational orientation within 10 degrees of perpendicular to each other.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 17, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200384610
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 10, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200353594
    Abstract: An abrasive article having a backing layer having a first major surface opposing a second major surface and a plurality of apertures extending from the first major surface to the second major surface. A plurality of abrasive particles having a first end with a smaller dimension than a second end and at least some of the plurality of abrasive particles located in at least some of the plurality of apertures such that the first end of the abrasive particle passes through an individual aperture and extends above the second major surface and the second end of the abrasive particle will not pass through the individual aperture. A binder coating applied to the plurality of abrasive particles retaining them in the backing layer.
    Type: Application
    Filed: November 14, 2018
    Publication date: November 12, 2020
    Inventors: Aaron K. Nienaber, Thomas J. Nelson, Dwight D. Erickson
  • Publication number: 20200346322
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed at regularly-spaced points along a spiral pattern extending outwardly toward the outer circumference. Each triangular abrasive platelet has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing, and at least 70 percent of the triangular abrasive platelets are disposed in a recurring sequential orientation having an oscillating Z-axis rotational orientation of the first respective sidewall relative to the tangents to the spiral pattern at regularly-spaced points.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 5, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: 10821079
    Abstract: The present disclosure relates to PKC activators and combinations thereof. The disclosure further relates to compositions, kits, uses, and methods thereof.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: November 3, 2020
    Assignee: Cognitive Research Enterprises, Inc.
    Inventors: Daniel L. Alkon, Thomas J. Nelson
  • Publication number: 20200331875
    Abstract: The present invention relates to methods of activate an isoform of protein kinase C (PKC) for the treatment of neurological diseases including Alzheimer's disease and stroke using cyclopropanated or epoxidized derivatives of mono- and polyunsaturated fatty acids. The present invention also relates to methods of reducing neurodegeneration using cyclopropanated or epoxidized derivatives of mono- and polyunsaturated fatty acids.
    Type: Application
    Filed: June 17, 2020
    Publication date: October 22, 2020
    Applicant: COGNITIVE RESEARCH ENTERPRISES, INC.
    Inventors: Thomas J. NELSON, Daniel L. ALKON
  • Publication number: 20200332162
    Abstract: A phenolic resin composition is described comprising at least 50 wt.-% of phenolic resin; first polymerized units comprising a cationic group; and second polymerized units comprising an anionic group. The cationic groups are ionically bonded to the anionic groups. The ionic bonding of the cationic group and anionic group of the polymerized units can provide certain complex viscosity and/or tan delta properties. In some embodiments, the phenolic resin composition has a complex viscosity at 65C of at least 50 Pascal(seconds) and/or has a tan delta at 65C ranging from 0.5 to 2.5. Abrasive articles and methods of making an abrasive article are also described.
    Type: Application
    Filed: December 17, 2018
    Publication date: October 22, 2020
    Inventors: Gregory P. Sorenson, Thomas J. Nelson, Ilya Gorodisher
  • Patent number: 10696644
    Abstract: The present invention relates to methods of activate an isoform of protein kinase C (PKC) for the treatment of neurological diseases including Alzheimer's disease and stroke using cyclopropanated or epoxidized derivatives of mono- and polyunsaturated fatty acids. The present invention also relates to methods of reducing neurodegeneration using cyclopropanated or epoxidized derivatives of mono- and polyunsaturated fatty acids.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: June 30, 2020
    Assignee: COGNITIVE RESEARCH ENTERPRISES, INC.
    Inventors: Thomas J. Nelson, Daniel L. Alkon
  • Patent number: 10655038
    Abstract: A method of making magnetizable abrasive particles includes providing a slurry layer disposed on a substrate. The slurry layer has an exposed surface and comprises magnetic particles, a binder precursor, and a liquid vehicle. Abrasive particles are electrostatically contacted with the slurry layer such that they are aligned substantially oriented perpendicular to the surface of the substrate, and are partially embedded within the slurry layer. The liquid vehicle is at least partially removed from the slurry layer and the binder precursor is converted into a binder to provide a magnetizable layer comprising the magnetic particles partially embedded in the binder. The magnetizable abrasive particles are separated from the releasable substrate. Each magnetizable abrasive particle respectively comprises a portion of the magnetizable layer disposed on a portion of an abrasive particle.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: May 19, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Jaime A. Martinez, Thomas J. Nelson, Mark A. Lukowski
  • Publication number: 20200071514
    Abstract: The disclosure relates to a curable composition comprising: a polymerizable epoxy-acrylate resin composition having a complex viscosity at 25° C. and 1 Hz frequency of at least about 4500 Pa-s and a probe tack peak force of at least about 300 kPa; and abrasive particles partially or fully embedded in the polymerizable epoxy-acrylate resin composition. The disclosure also relates to cured compositions formed from such curable compositions, wherein the abrasive particles are partially or fully embedded in the cured composition. In addition, the disclosure relates to abrasive articles made from such cured compositions as well as methods for making abrasive articles.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 5, 2020
    Inventors: Kathleen S. Shafer, Rebecca A. Putans, Ernest L. Thurber, Cyrus A. Anderson, Corinne E. Lipscomb, Thomas J. Nelson, Gregory P. Sorenson, Chainika Jangu
  • Publication number: 20200071584
    Abstract: Magnetizable abrasive particles are described comprising ceramic particles having outer surfaces comprising a coating of unsintered polyion and magnetic particles bonded to the polyion. In favored embodiments, the magnetic particles have a magnetic saturation of at least 10, 15, 20, 25, 30, 35, 40, 45 or 50 emu/gram. In another embodiment, an abrasive article is described comprising a plurality of magnetizable abrasive particles as described herein retained in a binder material. Also described are method of making magnetizable abrasive particles and methods of making an abrasive article comprising magnetizable abrasive particles.
    Type: Application
    Filed: October 24, 2017
    Publication date: March 5, 2020
    Inventors: Adam D. Miller, Sergei Manuilov, Naiyong Jing, Taisiya Skorina, Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Anderson, Thomas J. Nelson, Mark A. Lukowski, Louis S. Moren, Don V. West
  • Publication number: 20200047313
    Abstract: A shaped abrasive agglomerate particle includes a shaped abrasive particle bonded in a vitreous matrix. The shaped abrasive particles have a longest particle lineal dimension on a surface and a shortest particle dimension perpendicular to the longest particle lineal dimension, and the longest particle lineal dimension is at least twice the shortest particle dimension. The shaped abrasive agglomerate particle has a longest agglomerate lineal dimension on a surface and a shortest agglomerate dimension perpendicular to the longest agglomerate lineal dimension, and the longest agglomerate lineal dimension is at least twice the shortest agglomerate dimension. The abrasive agglomerate particles are useful in abrasive articles. Methods of making the shaped abrasive agglomerate particle and abrading a workpiece are also described.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 13, 2020
    Inventors: Mark A. Lukowski, Negus B. Adefris, Scott W. Peterson, Brian D. Goers, Rebecca A. Putans, Bridgette R. Shannon, Thomas J. Nelson, Jacob S. Beveridge
  • Publication number: 20190351531
    Abstract: A method of transferring a shaped particle to a substrate includes providing a scrim of at least two elongate strands periodically joined together at flexible bond regions to form an array of apertures between the strands. The scrim is extended along at least one direction to increase the minimum dimension of the apertures. Shaped particles are applied to the extended scrim and at least a portion of the shaped particles enter in at least some of the apertures therein. The extended scrim is relaxed and frictionally retains the particles between the elongate strands. The particle loaded scrim is extended along at least one direction to release and transfer the shaped particles to the substrate in a predetermined orientation.
    Type: Application
    Filed: September 25, 2017
    Publication date: November 21, 2019
    Inventors: Thomas J. Nelson, Jasmeet Kaur, Ronald W. Ausen, Jaime A. Martinez, Edward J. Woo
  • Publication number: 20190344402
    Abstract: In some examples, an abrasive particle transfer system including a production tool including a dispensing surface with a plurality of cavities formed therein; abrasive particles removably disposed within at least some of the cavities; and a nonwoven substrate having an outer surface opposing the dispensing surface of the production tool, wherein the dispending surface of the production tool is configured to apply a compressive force to the outer surface of the nonwoven substrate to compress the nonwoven substrate from a first thickness to a second thickness, wherein, while the nonwoven substrate is compressed to the second thickness by the production tool, the abrasive particles are transferred from the plurality of cavities to the nonwoven substrate.
    Type: Application
    Filed: September 25, 2017
    Publication date: November 14, 2019
    Inventors: Aaron K. Nienaber, Thomas J. Nelson, Grayce T. Huberty, Louis S. Moren, Wayne W. Maurer, Rebecca A. Putans, Ernest L. Thurber
  • Patent number: D870782
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 24, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: D879164
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: D879165
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert
  • Patent number: D879166
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert