Patents by Inventor Thomas P. Klun

Thomas P. Klun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10947618
    Abstract: A barrier film including a substrate; a base polymer layer adjacent to the substrate; an oxide layer adjacent to the base polymer layer; a adhesion-modifying layer adjacent to the oxide layer; and a top coat polymer layer adjacent to the adhesion-modifying layer. An optional inorganic layer can be applied over the top coat polymer layer. The inclusion of a adhesion-modifying layer provides for enhanced resistance to moisture and improved peel strength adhesion of the top coat polymer layer to the underlying barrier stack layers.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 16, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Joseph C. Spagnola, Mark A. Roehrig, Thomas P. Klun, Alan K. Nachtigal, Christopher S. Lyons, Guy D. Joly
  • Publication number: 20210069865
    Abstract: The present disclosure relates to saturated or primed abrasive article constructions containing an anti-loading composition which significantly reduces loading, is coatable, is durable, and is relatively inexpensive to manufacture. In particular, the use of the anti-loading compositions of the present disclosure as a size coat at least reduces if not eliminates the need for a supersize coat, while offering comparable if not superior performance and durability. The abrasive article further includes an anti-loading size layer comprising a size coat binder and wax at least partially disposed on the abrasive layer.
    Type: Application
    Filed: December 19, 2018
    Publication date: March 11, 2021
    Inventors: Jing Chen, Lan Hong Liu, Thomas P. Klun, Thomas W. Floyd, Bathsheba E. Chong Conklin, Dong Wu, Zhongmin Wang
  • Patent number: 10941313
    Abstract: A hardcoat composition is described comprising urethane (meth)acrylate oligomer having a first functional groups; an acrylic polymer having second functional groups; wherein the first and second functional groups form a hydrogen bond; and silica nanoparticles. The hardcoat composition may be cured by actinic radiation, upon which the acrylic polymer may be removed by solvent extraction. Also described are articles comprising the cured hardcoat described herein disposed on a surface of a substrate and methods of making an article.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: March 9, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Richard J. Pokorny, Nicholas L. Untiedt, Thomas P. Klun
  • Publication number: 20200362190
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20200354607
    Abstract: A curable composition comprises: a) 91 to 98.2 weight percent of: (i) at least one polymerizable compound containing at least one carbamylene group; or (ii) at least one polyurethane precursor system; and b) 0.2 to 9 weight percent of alpha alumina particles having a particle size distribution with a Dv50 of from 0.1 to 1 micron, wherein the weight percentages of a) and b) are based upon the total amount of a) and b). Cured compositions and their use in thermoforming are also disclosed.
    Type: Application
    Filed: December 6, 2018
    Publication date: November 12, 2020
    Inventors: Thomas P. Klun, Chunjie Zhang, Richard J. Pokorny, Benjamin R. Coonce, Benjamin G. Sonnek, Gregg A. Ambur, Jung-Sheng Wu
  • Publication number: 20200347236
    Abstract: A hardcoat composition is described comprising urethane (meth)acrylate oligomer having first functional groups; an acrylic polymer having second functional groups; wherein the first and second functional groups are capable of forming a hydrogen bond; and optionally nanoparticles. Also described are articles comprising the cured hardcoat described herein disposed on a surface of a substrate, method of using the articles, and methods of making the articles.
    Type: Application
    Filed: January 14, 2019
    Publication date: November 5, 2020
    Inventors: Richard J. Pokorny, Thomas P. Klun, Chad M. Amb, Nicholas L. Untiedt, Matthew V.B. Topeff, Bruce A. Nerad
  • Publication number: 20200338692
    Abstract: The present disclosure relates to an abrasive article construction containing an anti-loading composition which significantly reduces loading, is coatable, is durable, and is relatively inexpensive to manufacture. In particular, the use of the anti-loading compositions of the present disclosure as a size coat at least reduces if not eliminates the need for a supersize coat, while offering comparable if not superior performance and durability. In one aspect, the present disclosure provides an abrasive article including a backing with a first major surface and an opposing second major surface, an abrasive layer bonded to at least a portion of the first major surface, with the abrasive layer comprising abrasive particles retained in a make coat. The abrasive article further includes an anti-loading size layer comprising a size coat binder and wax at least partially disposed on the abrasive layer.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 29, 2020
    Inventors: Lan Hong Liu, Thomas P. Klun, Jing Chen, Thomas W. Floyd, Bathsheba E. Chong Conklin, Adriana C. Gorgan
  • Publication number: 20200324527
    Abstract: A composite film comprises: a first unitary thermoplastic polymer film; a low surface energy abrasion resistant layer disposed on the first unitary thermoplastic polymer film; a first adhesive layer proximate and securely bonded to the first unitary thermoplastic polymer film; a second unitary thermoplastic polymer film bonded to the first adhesive layer; and a second adhesive layer bonded to the second unitary thermoplastic polymer film opposite the first adhesive layer. A protective cover for an electronic device comprises: a first unitary thermoplastic polymer film; a low surface energy abrasion resistant layer disposed on the first unitary thermoplastic polymer film; a first adhesive layer proximate and securely bonded to the first unitary thermoplastic polymer film.
    Type: Application
    Filed: December 7, 2018
    Publication date: October 15, 2020
    Inventors: Thomas P. Klun, Chunjie Zhang, Richard J. Pokorny, Benjamin R. Coonce, Benjamin G. Sonnek, Gregg A. Ambur, Jung-Sheng Wu
  • Patent number: 10804419
    Abstract: Encapsulated device including a photovoltaic cell and a composite film overlaying at least a portion of the photovoltaic cell, the composite film further including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer, and a protective (co)polymer layer derived from a silane precursor compound on the oxide layer.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: October 13, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly
  • Publication number: 20200315924
    Abstract: The present disclosure provides an inorganic dental filler including a surface treated with at least one silane. Exemplary silanes described in the present disclosure for the surface treatment of the inorganic filler include silanes of Formula I and/or Formula II: (RSi)—(CR1R2)n—(NH—C(O)—O—CH2—CH2)q—N(R5)—C(O)—NH—(CH2—CH2—O)t—CR3R4—CH2-(A) Formula I (RSi)—(CR1R2)n—NH—C(O)—O—CR3R4-(L)q-CH2-(A) Formula II, wherein: RSi is a silane-containing group of the formula —Si(Yp)(R6)3-p, wherein Y is a hydrolysable group, R6 is a monovalent alkyl or aryl group, and p is 1, 2, or 3. Methods of making and using the surface treated inorganic dental fillers are also disclosed.
    Type: Application
    Filed: December 18, 2018
    Publication date: October 8, 2020
    Inventors: Bradley D. Craig, Paul J. Homnick, Ahmed S. Abuelyaman, Thomas P. Klun
  • Patent number: 10784455
    Abstract: A barrier film including a substrate, a base (co)polymer layer applied on a major surface of the substrate, an oxide layer applied on the base (co)polymer layer, and a protective (co)polymer layer applied on the oxide layer. The protective (co)polymer layer is formed as the reaction product of a first (meth)acryloyl compound and a (meth)acryl-silane compound derived from a Michael reaction between a second (meth)acryloyl compound and an aminosilane. The first and second (meth)acryloyl compounds may be the same. In some embodiments, a multiplicity of alternating layers of the oxide layer and the protective (co)polymer layer may be used. An oxide layer can be applied over the top protective (co)polymer layer. The barrier films provide, in some embodiments, enhanced resistance to moisture and improved peel strength adhesion of the protective (co)polymer layer(s) to the underlying layers. A process of making, and methods of using the barrier film are also described.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: September 22, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Suresh Iyer, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig
  • Patent number: 10774236
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: September 15, 2020
    Assignee: 3M INNOVATIVE PROPERTIES, COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10751264
    Abstract: The present application is directed to a curable composition and a method for isolating a working area in a patient's mouth. The curable composition can include a borate-crosslinked polysiloxane, at least one ethylenically unsaturated monomer comprising at least two polymerizable groups, and an initiator.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: August 25, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bradley D. Craig, Joel D. Oxman, Thomas P. Klun, Richard B. Ross
  • Publication number: 20200171521
    Abstract: Presently described are components of a spray application system. At least one component comprises a liquid repellent surface layer. The liquid repellent surface (e.g. layer) may comprise a porous layer and a lubricant impregnated into pores of the porous layer; a fluoropolymer; a fluorochemical material and an organic polymeric binder; or a fluorochemical material melt additive and a thermoplastic polymeric material component. The component is typically a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof. In some embodiments, the component comprises a thermoplastic polymeric material. In some favored embodiments, the component is a removable liquid reservoir or liner. In some favored embodiments, the component is a collapsible liquid reservoir or liner. The spray application system typically further comprises a gravity-fed spray gun.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Adam J. Meuler, Nicholas L. Untiedt, Stephen C.P. Joseph, Thomas P. Klun, Naiyong Jing, Paul B. Armstrong, David A. Gzik, Cheryl L.S. Elsbernd
  • Patent number: 10636920
    Abstract: A barrier film that includes a substrate, a first polymer layer on a major surface of the substrate, an oxide layer on the first polymer layer, and a second polymer layer on the oxide layer. At least one of the first or second polymer layers includes a siloxane reaction product of a secondary or tertiary amino-functional silane having at least two silane groups. A method of making the barrier film and articles and a barrier assembly including the barrier film are also disclosed.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: April 28, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph C. Spagnola, Mark A. Roehrig, Thomas P. Klun, Alan K. Nachtigal, Jennifer K. Schnobrich, Guy D. Joly
  • Publication number: 20200115586
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20200109309
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—Rs]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10590072
    Abstract: Described are compounds of the formula: wherein RAryl is an aryl group; R1 is a linear or branched C2-C40 hydrocarbyl group; R2 is a C1-C4 alkyl; Rf is a perfluorinated group of having an average of 3 to 5 carbon atoms; and subscript x is 1 to 3.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: March 17, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Georgiy Teverovskiy, Chetan P. Jariwala, Thomas P. Klun
  • Publication number: 20200071562
    Abstract: A hardcoat composition is described comprising urethane (meth)acrylate oligomer having a first functional groups; an acrylic polymer having second functional groups; wherein the first and second functional groups form a hydrogen bond; and silica nanoparticles. The hardcoat composition may be cured by actinic radiation, upon which the acrylic polymer may be removed by solvent extraction. Also described are articles comprising the cured hardcoat described herein disposed on a surface of a substrate and methods of making an article.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 5, 2020
    Applicant: 3M Innovative Properties Company
    Inventors: Richard J. POKORNY, Nicholas L. UNTIEDT, Thomas P. KLUN
  • Publication number: 20200017623
    Abstract: The disclosure relates to compositions, methods of applying such compositions, and methods for curing such compositions to a depth of cure of up to about 30 mm within about 0.5 second to about two minutes per light exposure area.
    Type: Application
    Filed: March 8, 2018
    Publication date: January 16, 2020
    Inventors: Sheng Ye, Ying Lin, Michael E. Griffin, Dennis R. Keicher, Jay S. Schlechte, Paul J. Homnick, Richard S. Smith, Thomas P. Klun, Richard J. Pokorny, Steven Y. Yu, Patricia M. Savu, Michael A. Kropp, Ian Dailey, Charlie P. Blackwell