Patents by Inventor Tiao-Yuan Huang

Tiao-Yuan Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9653552
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of the top surface and the two opposed side surfaces, and a gate electrode covering at least a portion of the gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Publication number: 20160322463
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of the top surface and the two opposed side surfaces, and a gate electrode covering at least a portion of the gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Patent number: 9406800
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of the top surface and the two opposed side surfaces, and a gate electrode covering at least a portion of the gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: August 2, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Publication number: 20160104800
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of the top surface and the two opposed side surfaces, and a gate electrode covering at least a portion of the gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 14, 2016
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Patent number: 9214554
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of the top surface and the two opposed side surfaces, and a gate electrode covering at least a portion of the gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Publication number: 20150206970
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of the top surface and the two opposed side surfaces, and a gate electrode covering at least a portion of the gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Application
    Filed: January 28, 2015
    Publication date: July 23, 2015
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang-Yu
  • Patent number: 8946811
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of said top surface and said two opposed side surfaces, and a gate electrode covering at least a portion of said gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Publication number: 20080006908
    Abstract: A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of said top surface and said two opposed side surfaces, and a gate electrode covering at least a portion of said gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Inventors: Hong-Nien Lin, Horng-Chih Lin, Tiao-Yuan Huang
  • Patent number: 6894352
    Abstract: A method for fabricating a single-electron transistor (SET). A one dimensional channel is formed between source and drain on a silicon-on-insulator substrate, and the separated polysilicon sidewall spacer gates are formed by electron-beam lithographically etching process in a self-aligned manner. Operation of the single-electron transistor with self-aligned polysilicon sidewall spacer gates is achieved by applying external bias to the self-aligned polysilicon sidewall spacer gates to form two potential barriers and a quantum dot capable of storage charges between the two potential barriers. A metal upper gate is finally formed and biased to induce a two-dimensional electron gas (2DEG) and control the energy level of the quantum well.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: May 17, 2005
    Inventors: Shu-Fen Hu, Yung-Chun Wu, Wen-Tai Lu, Shiue-Shin Liu, Tiao-Yuan Huang, Tien-Sheng Chao
  • Publication number: 20040061173
    Abstract: A method for fabricating a single-electron transistor (SET). A one dimensional channel is formed between source and drain on a silicon-on-insulator substrate, and the separated polysilicon sidewall spacer gates are formed by electron-beam lithographically etching process in a self-aligned manner. Operation of the single-electron transistor with self-aligned polysilicon sidewall spacer gates is achieved by applying external bias to the self-aligned polysilicon sidewall spacer gates to form two potential barriers and a quantum dot capable of storage charges between the two potential barriers. A metal upper gate is finally formed and biased to induce a two-dimensional electron gas (2DEG) and control the energy level of the quantum well.
    Type: Application
    Filed: June 25, 2003
    Publication date: April 1, 2004
    Inventors: Shu-Fen Hu, Yung-Chun Wu, Wen-Tai Lu, Shiue-Shin Liu, Tiao-Yuan Huang, Tien-Sheng Chao
  • Patent number: 6667508
    Abstract: A novel structure of nonvolatile memory is formed on p type silicon and includes a stacked gate, a tunneling dielectric layer, a floating gate (FG), a dielectric layer and a control gate (CG). One side of the stacked gate has a source region and the other has a drain region, wherein the surface of the source region includes a thin metal silicide connected with a channel region to form a Schottky barrier. A tilted angle implant with As or P doping is performed on the p type silicon substrate to form a drain region and extend a portion of the drain region to a channel region under the stacked gate. For implanting, an n doped source region is also formed, creating an offset between the source region and the channel region as a result of the tilted angle implant. For programming, the source region is grounded, positive voltage is applied to the drain region and the gate, such that the hot carriers inject into the floating gate through the channel adjacent to the source region.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: December 23, 2003
    Inventors: Horng-Chih Lin, Tiao-Yuan Huang
  • Patent number: 6555424
    Abstract: The present invention discloses a thin film transistor with sub-gates and Schottky source/drain and a method of manufacturing the same. Doping of source/drain, and the following annealing steps used conventionally are omitted and the complexity of process and process costs are reduced. The temperature of the process is also decreased. A thin film transistor with sub-gates and Schottky source/drain of the invention is able to operate in both the n type and p type channel modes on the same transistor element depending on the biased voltage of the sub-gate. Moreover, an electric junction is formed by induction, using bias voltage applied on the sub-gate, which takes the place of the conventional source/drain extensions. Consequently, the off-state leakage current is reduced.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: April 29, 2003
    Assignee: S. M. Sze
    Inventors: Horng-Chih Lin, Ming-Shih Tsai, Tiao-Yuan Huang
  • Patent number: 6495432
    Abstract: A method of reducing the boron-penetrating of effect in a CMOS transistor provides a silicon substrate, which comprises an isolating area, an active area and a gate oxide layer formed on the silicon substrate in the active layer. A polysilicon layer is then deposited on the silicon substrate. Next, boron ions (B+) are doped into the polysilicon layer. Next, a gate photoresist with a predetermined gate pattern is formed on the polysilicon layer. The polysilicon not covered by the gate photoresist is then etched to form a polysilicon gate. The gate photoresist is used as a mask to dope boron difluoride ions (BF2+) into the silicon substrate. Finally, after removing the gate photoresist, a tempering procedure is performed to form a shallow junction area of a source/drain region on the silicon substrate.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 17, 2002
    Assignee: National Science Council
    Inventors: Chi-Chun Chen, Horng-Chih Lin, Chun-Yen Chang, Tiao-Yuan Huang
  • Publication number: 20020163032
    Abstract: A novel structure of nonvolatile memory is formed on p type silicon and includes a stacked gate, a tunneling dielectric layer, a floating gate (FG), a dielectric layer and a control gate (CG). One side of the stacked gate has a source region and the other has a drain region, wherein the surface of the source region includes a thin metal silicide connected with a channel region to form a Schottky barrier. A tilted angle implant with As or P doping is performed on the p type silicon substrate to form a drain region and extend a portion of the drain region to a channel region under the stacked gate. For implanting, an n doped source region is also formed, creating an offset between the source region and the channel region as a result of the tilted angle implant. For programming, the source region is grounded, positive voltage is applied to the drain region and the gate, such that the hot carriers inject into the floating gate through the channel adjacent to the source region.
    Type: Application
    Filed: December 19, 2001
    Publication date: November 7, 2002
    Inventors: Horng-Chih Lin, Tiao-Yuan Huang
  • Patent number: 6432786
    Abstract: A method of forming a gate oxide layer with improved ability to resist process damage increases the reliability and yield of a transistor device. First, a nitrogen-containing gate oxide layer is formed on an element area of a silicon substrate. Then, a polysilicon layer is deposited on the gate oxide layer. Next, a gate doping process and a fluorine ion implantation are performed on the polysilicon layer. Then, a high-temperature tempering procedure is performed to make the fluorine enter the gate oxide layer.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: August 13, 2002
    Assignee: National Science Council
    Inventors: Chi-Chun Chen, Horng-Chih Lin, Chun-Yen Chang, Tiao-Yuan Huang
  • Publication number: 20020022329
    Abstract: A method of reducing the boron-penetrating effect in a CMOS transistor provides a silicon substrate, which comprises an isolating area, an active area and a gate oxide layer formed on the active layer. A polysilicon layer is then deposited on the silicon substrate. Next, the boron ion (B+) is doped into the polysilicon layer. Next, a gate photoresist with a predetermined gate pattern is formed on the polysilicon layer. The polysilicon not covered by the gate photoresist is then etched to from a polysilicon gate. The gate photoresist is used as a mask to dope the boron-fluorine ion (BF2+) into the silicon substrate. Finally, after removing the gate photoresist, a tempering procedure is performed to form a shallow junction area of a source/drain on the silicon substrate.
    Type: Application
    Filed: April 12, 2001
    Publication date: February 21, 2002
    Applicant: National Science Council
    Inventors: Chi-Chun Chen, Horng-Chih Lin, Chun-Yen Chang, Tiao-Yuan Huang
  • Publication number: 20020019085
    Abstract: A method of forming a gate oxide layer with improved ability to resist process damage increases the reliability and yield of a transistor device. First, a nitrogen-containing gate oxide layer is formed on an element area of a silicon substrate. Then, a polysilicon layer is deposited on the gate oxide layer. Next, a gate doping process and a fluorine ion implantation are performed on the polysilicon layer. Then, a high-temperature tempering procedure is performed to make the fluorine enter the gate oxide layer.
    Type: Application
    Filed: April 9, 2001
    Publication date: February 14, 2002
    Applicant: National Science Council
    Inventors: Chi-Chun Chen, Horng-Chih Lin, Chun-Yen Chang, Tiao-Yuan Huang
  • Publication number: 20020009833
    Abstract: The present invention discloses a thin film transistor with sub-gates and Schottky source/drain and a method of manufacturing the same. Doping of source/drain, and the following annealing steps used conventionally are omitted and the complexity of process and process costs are reduced. The temperature of the process is also decreased. A thin film transistor with sub-gates and Schottky source/drain of the invention is able to operate in both the n type and p type channel modes on the same transistor element depending on the biased voltage of the sub-gate. Moreover, an electric junction is formed by induction, using bias voltage applied on the sub-gate, which takes the place of the conventional source/drain extensions. Consequently, the off-state leakage current is reduced.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 24, 2002
    Inventors: Horng-Chih Lin, Ming-Shih Tsai, Tiao-Yuan Huang
  • Patent number: 6232206
    Abstract: A method is provided for selective oxidation on source/drain regions of transistors on an integrated circuit. The method includes the steps of a) incorporating a neutral species into first kind of the source/drain regions, and b) forming oxidation regions over the first kind of source/drain regions and second kind of the source/drain regions, wherein the oxidation regions over the second kind are thicker than the oxidation regions over the first kind.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: May 15, 2001
    Assignee: National Science Council
    Inventors: Tiao-Yuan Huang, Horng-Chih Lin
  • Patent number: 6087189
    Abstract: For the contact opening in advanced IC processing, it becomes critical to monitor the degree of overetching of the thin silicide layer and also to obtain the etching rate of the silicide layer. A method is disclosed which will allow the electrical measurements of the sheet resistance of the exposed (by the contact etch) silicide layer, thus allowing electrical measurements to the integrity as well as the thickness of the remaining silicide layer. A main feature of the disclosed test method is a modification of the conventional van der Pauw test structure, or of the cross-bridge structure (which will allow electrical measurement of the line width, in addition to the sheet resistance information).
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: July 11, 2000
    Assignee: National Science Council
    Inventor: Tiao-Yuan Huang