Patents by Inventor Tien-Hao Tang

Tien-Hao Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8492834
    Abstract: An electrostatic discharge protection device comprises a substrate with a first conductivity, a gate, a drain structure and a source structure. The gate is disposed on a surface of the substrate. The drain structure with a second conductivity type comprises a first doping region with a first doping concentration disposed adjacent to the gate and extending into the substrate from the surface of the substrate, a second doping region extending into and stooped at the first doping region from the surface of the substrate and having a second doping concentration substantially greater than the first doping concentration, and a third doping region disposed in the substrate beneath the second doping region and having a third doping concentration substantially greater than the first doping concentration. The source structure with the second conductivity is disposed in the substrate and adjacent to the gate electrode.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 23, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Tai-Hsiang Lai, Lu-An Chen, Tien-Hao Tang
  • Publication number: 20130181211
    Abstract: Provided is a metal oxide semiconductor device, including a substrate, a gate, a first-type first heavily doped region, a first-type drift region, a second-type first heavily doped region, a contact, a first electrode, and a second electrode. The gate is disposed on the substrate. The first-type first heavily doped region is disposed in the substrate at a side of the gate. The first-type drift region is disposed in the substrate at another side of the gate. The second-type first heavily doped region is disposed in the first-type drift region. The contact is electrically connected to the second-type first heavily doped region. The contact is the closest contact to the gate on the first-type drift region. The first electrode is electrically connected to the contact, and the second electrode is electrically connected to the first-type first heavily doped region and the gate.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: United Microelectronics Corp.
    Inventors: Lu-An Chen, Chang-Tzu Wang, Tai-Hsiang Lai, Tien-Hao Tang
  • Patent number: 8477467
    Abstract: An electrostatic discharge protection circuit is located between a first voltage terminal and a second voltage terminal. The electrostatic discharge protection circuit includes a first semiconductor switch and a second semiconductor switch. The first semiconductor switch is electrically connected to the first voltage terminal. If a voltage at the first voltage terminal complies with a starting condition, the first semiconductor switch is turned on, so that an electrostatic discharge current flows through the first voltage terminal and the first semiconductor switch. The second semiconductor switch is electrically connected between the first semiconductor switch and the second voltage terminal, wherein the electrostatic discharge current from the first semiconductor switch passes to the second voltage terminal through the second semiconductor switch.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 2, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Lu-An Chen, Tai-Hsiang Lai, Tien-Hao Tang
  • Patent number: 8467162
    Abstract: The ESD protection circuit is electrically connected between a first power rail and a second power rail, and includes an ESD protection device, a switching device electrically connected between the ESD protection device and a first power rail, and a low-pass filter electrically connected between the first power rail and the first switching device. The ESD protection device includes a BJT and a first resistor electrically connected between a base of the BJT and a first power rail. When no ESD event occurs, a potential of the base is larger than or equal to a potential of an emitter of the BJT. When the ESD event occurs, the potential of the base is smaller than the potential of the emitter.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: June 18, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Tzu Wang, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20130113045
    Abstract: An electrostatic discharge (ESD) device is described, including a gate line, a source region at a first side of the gate line, a comb-shaped drain region disposed at a second side of the gate line and having comb-teeth parts, a salicide layer on the source region and the drain region, and contact plugs on the salicide layer on the source region and the drain region. Each comb-teeth part has thereon, at a tip portion thereof, at least one of the contact plugs.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yung-Ju Wen, Chang-Tzu Wang, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20130107402
    Abstract: An electrostatic protection circuit includes a strained transistor array, an unstrained transistor, and a control circuit. The strained transistor array has a first end electrically connected to a bias terminal. The unstrained transistor has a first end electrically connected to the bias terminal. The control circuit is electrically connected to a second end of the strained transistor array, a second end of the unstrained transistor and a ground terminal. The control circuit controls impedance between the second end of the strained transistor array and the ground terminal according to current flowing through the unstrained transistor. The electrostatic protection circuit is capable of preventing latch-up effect.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Inventors: Chang-Tzu Wang, Tien-Hao Tang
  • Publication number: 20130093009
    Abstract: A method for forming an NMOS transistor includes forming a P-substrate; forming an N-well on the P-substrate; forming an N-drift region on the N-well; forming an n+ drain on the N-drift region; forming a plurality of first contacts on the n+ drain along a longitudinal direction; forming a P-body on the N-well; forming a source on the P-body, the source including a plurality of n+ doped regions and at least one p+ doped region arranged along the longitudinal direction; forming a plurality of second contacts on the plurality of n+ doped regions and the at least one p+ doped region; forming a polygate on the P-body; and forming a gate oxide between the polygate and the source.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Inventors: Lu-An Chen, Tai-Hsiang Lai, Tien-Hao Tang
  • Publication number: 20130088800
    Abstract: An exemplary ESD protection device is adapted for a high-voltage tolerant I/O circuit and includes a stacked transistor and a gate-grounded transistor e.g., a non-lightly doped drain type gate-grounded transistor. The stacked transistor and the gate-grounded transistor are electrically coupled in parallel between an I/O pad and a grounding voltage of the high-voltage tolerant I/O circuit.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chang-Tzu WANG, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20130049112
    Abstract: An electrostatic discharge protection device comprises a substrate with a first conductivity, a gate, a drain structure and a source structure. The gate is disposed on a surface of the substrate. The drain structure with a second conductivity type comprises a first doping region with a first doping concentration disposed adjacent to the gate and extending into the substrate from the surface of the substrate, a second doping region extending into and stooped at the first doping region from the surface of the substrate and having a second doping concentration substantially greater than the first doping concentration, and a third doping region disposed in the substrate beneath the second doping region and having a third doping concentration substantially greater than the first doping concentration. The source structure with the second conductivity is disposed in the substrate and adjacent to the gate electrode.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tai-Hsiang LAI, Lu-An Chen, Tien-Hao Tang
  • Publication number: 20130027821
    Abstract: An electrostatic discharge protection circuit is located between a first voltage terminal and a second voltage terminal. The electrostatic discharge protection circuit includes a first semiconductor switch and a second semiconductor switch. The first semiconductor switch is electrically connected to the first voltage terminal. If a voltage at the first voltage terminal complies with a starting condition, the first semiconductor switch is turned on, so that an electrostatic discharge current flows through the first voltage terminal and the first semiconductor switch. The second semiconductor switch is electrically connected between the first semiconductor switch and the second voltage terminal, wherein the electrostatic discharge current from the first semiconductor switch passes to the second voltage terminal through the second semiconductor switch.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Lu-An CHEN, Tai-Hsiang LAI, Tien-Hao TANG
  • Patent number: 8319258
    Abstract: An ESD clamping device comprises a plurality of fingers each comprising a source region of first conductivity type formed in a substrate of second conductivity type, a drain region of said first conductivity type formed in the substrate, and a gate formed over the substrate and between the source and drain regions. At least one of the fingers each has an ESD implantation region formed in the substrate and partially underlying the drain region of the finger, the ESD implantation region being a heavily doped region of said second conductivity type. Furthermore, at least one of the fingers has a gate extension portion projecting from the gate and demarcating an additional region in at least the drain region of the finger, the additional region of said second conductivity type being electrically connected to at least one of the gate and the substrate of each of the fingers.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: November 27, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Tzu Wang, Tien-Hao Tang
  • Patent number: 8299532
    Abstract: An ESD protection device structure includes a well having a first conductive type, a first doped region having a second conductive type disposed in the well, a second doped region having the first conductive type, and a third doped region having the second conductive type disposed in the well. The second doped region is disposed within the first doped region so as to form a vertical BJT, and the first doped region, the well and the third doped region forms a lateral BJT, so that pulse voltage that the ESD protection structure can tolerate can be raised.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 30, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Tai-Hsiang Lai, Kuei-Chih Fan, Tien-Hao Tang
  • Publication number: 20120170160
    Abstract: The ESD protection circuit is electrically connected between a first power rail and a second power rail, and includes an ESD protection device, a switching device electrically connected between the ESD protection device and a first power rail, and a low-pass filter electrically connected between the first power rail and the first switching device. The ESD protection device includes a BJT and a first resistor electrically connected between a base of the BJT and a first power rail. When no ESD event occurs, a potential of the base is larger than or equal to a potential of an emitter of the BJT. When the ESD event occurs, the potential of the base is smaller than the potential of the emitter.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Inventors: Chang-Tzu Wang, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20110193170
    Abstract: An ESD clamping device comprises a plurality of fingers each comprising a source region of first conductivity type formed in a substrate of second conductivity type, a drain region of said first conductivity type formed in the substrate, and a gate formed over the substrate and between the source and drain regions. At least one of the fingers each has an ESD implantation region formed in the substrate and partially underlying the drain region of the finger, the ESD implantation region being a heavily doped region of said second conductivity type. Furthermore, at least one of the fingers has a gate extension portion projecting from the gate and demarcating an additional region in at least the drain region of the finger, the additional region of said second conductivity type being electrically connected to at least one of the gate and the substrate of each of the fingers.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 11, 2011
    Inventors: Chang-Tzu WANG, Tien-Hao TANG
  • Patent number: 7910998
    Abstract: An SCR device includes a substrate, a plurality of isolation structures defining a first region and a second region in the substrate, an n well disposed in the substrate, an n type first doped region disposed in the first region in the substrate, a p type second doped region disposed in the second region in the substrate, and a p type third doped region (PESD implant region) disposed underneath the first doped region in the first region in the substrate. The well is disposed underneath the first region and the second region, and the third doped region isolates the first doped region from the well.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 22, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Yen Hwang, Tien-Hao Tang
  • Patent number: 7906810
    Abstract: A LDMOS device for an ESD protection circuit is provided. The LDMOS device includes a substrate of a first conductivity type, a deep well region of a second conductivity type, a body region of the first conductivity type, first and second doped regions of the second conductivity type, and a gate electrode. The deep well region is disposed in the substrate. The body region and the first doped region are respectively disposed in the deep well region. The second doped region is disposed in the body region. The gate electrode is disposed on the deep well region between the first and second doped regions. It is noted that the body region does not include a doped region of the first conductivity type having a different doped concentration from the body region.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 15, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Tzu Wang, Tien-Hao Tang
  • Publication number: 20110042716
    Abstract: An ESD protection device structure includes a well having a first conductive type, a first doped region having a second conductive type disposed in the well, a second doped region having the first conductive type, and a third doped region having the second conductive type disposed in the well. The second doped region is disposed within the first doped region so as to form a vertical BJT, and the first doped region, the well and the third doped region forms a lateral BJT, so that pulse voltage that the ESD protection structure can tolerate can be raised.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Inventors: Tai-Hsiang Lai, Kuei-Chih Fan, Tien-Hao Tang
  • Publication number: 20100148264
    Abstract: An ESD protection device including a substrate, a gate structure, a source region, a drain region and a first implanted region is provided. The gate structure includes a gate dielectric layer and a gate sequentially disposed on the substrate. The source region and the drain region are disposed in the substrate beside the gate structure. The first implanted region has the same conductivity type as the drain region. The first implanted region is disposed below the drain region, and the border thereof does not exceed the border of the drain region.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Yen Hwang, Tien-Hao Tang
  • Publication number: 20100102379
    Abstract: A LDMOS device includes a substrate of a first conductivity type, a deep well region of a second conductivity type, two body regions of the first conductivity type, a body connection region of the first conductivity type, two source regions of the second conductivity type, a drain region of the second conductivity type, a channel region, and a gate electrode. The body regions are disposed in the deep well region configured in the substrate. The body connection region is disposed in the deep well region to connect the body regions. Each of the source regions is disposed in the body region. The drain region is disposed in the deep well between the source regions. The channel region is disposed in a portion of the body region. The gate electrode is disposed on the deep well region between the source regions and the drain region and covers the channel region.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Applicant: United Microelectronics Corp.
    Inventors: Chang-Tzu Wang, Tien-Hao Tang
  • Publication number: 20100032758
    Abstract: A LDMOS device for an ESD protection circuit is provided. The LDMOS device includes a substrate of a first conductivity type, a deep well region of a second conductivity type, a body region of the first conductivity type, first and second doped regions of the second conductivity type, and a gate electrode. The deep well region is disposed in the substrate. The body region and the first doped region are respectively disposed in the deep well region. The second doped region is disposed in the body region. The gate electrode is disposed on the deep well region between the first and second doped regions. It is noted that the body region does not include a doped region of the first conductivity type having a different doped concentration from the body region.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Tzu Wang, Tien-Hao Tang