Patents by Inventor Tien-Wei YU

Tien-Wei YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097009
    Abstract: A semiconductor structure includes a substrate, a channel region, a gate structure, and source/drain regions. The channel region is over the substrate. The gate structure is over the channel region, and includes a high-k dielectric layer, a tungsten layer over the high-k dielectric layer, and a fluorine-containing work function layer over the tungsten layer. The source/drain regions are at opposite sides of the channel region.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chandrashekhar P. SAVANT, Tien-Wei YU, Ke-Chih LIU, Chia-Ming TSAI
  • Patent number: 11908915
    Abstract: A semiconductor device includes a gate structure disposed over a channel region and a source/drain region. The gate structure includes a gate dielectric layer over the channel region, one or more work function adjustment material layers over the gate dielectric layer, and a metal gate electrode layer over the one or more work function adjustment material layers. The one or more work function adjustment layers includes an aluminum containing layer, and a diffusion barrier layer is disposed at at least one of a bottom portion and a top portion of the aluminum containing layer. The diffusion barrier layer is one or more of a Ti-rich layer, a Ti-doped layer, a Ta-rich layer, a Ta-doped layer and a Si-doped layer.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Tien-Wei Yu, Chia-Ming Tsai
  • Patent number: 11855189
    Abstract: A semiconductor device includes a substrate, a semiconductor fin, a gate structure, and source/drain structures. The semiconductor fin extends upwardly from the substrate. The gate structure is across the semiconductor fin and includes a high-k dielectric layer over the semiconductor fin, a fluorine-containing work function layer over the high-k dielectric layer and comprising fluorine, a tungsten-containing layer over the fluorine-containing work function layer, and a metal gate electrode over the tungsten-containing layer. The source/drain structures are on the semiconductor fin and at opposite sides of the gate structure.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chandrashekhar P. Savant, Tien-Wei Yu, Ke-Chih Liu, Chia-Ming Tsai
  • Publication number: 20230377994
    Abstract: A semiconductor device includes a gate structure disposed over a channel region, and a source/drain region. The gate structure includes a gate dielectric layer over the channel region, a first work function adjustment layer, over the gate dielectric layer, a first shield layer over the first work function adjustment layer, a first barrier layer, and a metal gate electrode layer. The first work function adjustment layer is made up of n-type work function adjustment layer and includes aluminum. The first shield layer is made of at least one selected from the group consisting of metal, metal nitride, metal carbide, silicide, a layer containing one or more of F, Ga, In, Zr, Mn and Sn, and an aluminum containing layer having a lower aluminum concentration than the first work function adjustment layer.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Chandrashekhar Prakash SAVANT, Chia-Ming Tsai, Ming-Te Chen, Tien-Wei Yu
  • Patent number: 11784187
    Abstract: In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region made of a semiconductor material, a first work function adjustment material layer is formed over the gate dielectric layer, an adhesion enhancement layer is formed on the first work function adjustment material layer, a mask layer including an antireflective organic material layer is formed on the adhesion enhancement layer, and the adhesion enhancement layer and the first work function adjustment material layer are patterned by using the mask layer as an etching mask. The adhesion enhancement layer has a higher adhesion strength to the antireflective organic material layer than the first work function adjustment material layer.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Tien-Wei Yu, Chia-Ming Tsai
  • Publication number: 20230268231
    Abstract: The present disclosure describes a method for forming gate stack layers with a fluorine concentration up to about 35 at. %. The method includes forming dielectric stack, barrier layer and soaking the dielectric stack and/or barrier layer in a fluorine-based gas. The method further includes depositing one or more work function layers on the high-k dielectric layer, and soaking at least one of the one or more work function layers in the fluorine-based gas. The method also includes optional fluorine drive in annealing process, together with sacrificial blocking layer to avoid fluorine out diffusion and loss into atmosphere.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash SAVANT, Chia-Ming TSAI, Ming-Te Chen, Shih-Chi Lin, Zack Chong, Tien-Wei Yu
  • Patent number: 11670553
    Abstract: The present disclosure describes a method for forming gate stack layers with a fluorine concentration up to about 35 at. %. The method includes forming dielectric stack, barrier layer and soaking the dielectric stack and/or barrier layer in a fluorine-based gas. The method further includes depositing one or more work function layers on the high-k dielectric layer, and soaking at least one of the one or more work function layers in the fluorine-based gas. The method also includes optional fluorine drive in annealing process, together with sacrificial blocking layer to avoid fluorine out diffusion and loss into atmosphere.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash Savant, Chia-Ming Tsai, Ming-Te Chen, Shih-Chi Lin, Zack Chong, Tien-Wei Yu
  • Publication number: 20230122103
    Abstract: The present disclosure describes method to form a semiconductor device with a diffusion barrier layer. The method includes forming a gate dielectric layer on a fin structure, forming a work function stack on the gate dielectric layer, reducing a carbon concentration in the work function stack, forming a barrier layer on the work function stack, and forming a metal layer over the barrier layer. The barrier layer blocks a diffusion of impurities into the work function stack, the gate dielectric layer, and the fin structure.
    Type: Application
    Filed: November 7, 2022
    Publication date: April 20, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash SAVANT, Tien-Wei YU, Chia-Ming TSAI
  • Patent number: 11552178
    Abstract: The present disclosure describes a method for the formation of gate stacks having two or more titanium-aluminum (TiAl) layers with different Al concentrations (e.g., different Al/Ti ratios). For example, a gate structure can include a first TiAl layer with a first Al/Ti ratio and a second TiAl layer with a second Al/Ti ratio greater than the first Al/Ti ratio of the first TiAl layer.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Wei Wang, Chia-Ming Tsai, Ke-Chih Liu, Chandrashekhar Prakash Savant, Tien-Wei Yu
  • Publication number: 20230005796
    Abstract: The present disclosure describes a semiconductor device having metal boundary trench isolation with electrically conductive intermediate structures acting as a metal diffusion barrier. The semiconductor structure includes a first fin structure and a second fin structure on a substrate, an insulating layer between the first and second fin structures, a gate dielectric layer on the insulating layer and the first and second fin structures, and a first work function stack and a second work function stack on the gate dielectric layer. The first work function stack is over the first fin structure and a first portion of the insulating layer, and the second work function stack is over the second fin structure and a second portion of the insulating layer adjacent to the first portion. The semiconductor structure further includes a conductive intermediate structure on the gate dielectric layer and between the first and second work function stacks.
    Type: Application
    Filed: July 26, 2022
    Publication date: January 5, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash SAVANT, Chia-Ming TSAI, Yuh-Ta FAN, Tien-Wei YU
  • Patent number: 11495463
    Abstract: The present disclosure describes method to form a semiconductor device with a diffusion barrier layer. The method includes forming a gate dielectric layer on a fin structure, forming a work function stack on the gate dielectric layer, reducing a carbon concentration in the work function stack, forming a barrier layer on the work function stack, and forming a metal layer over the barrier layer. The barrier layer blocks a diffusion of impurities into the work function stack, the gate dielectric layer, and the fin structure.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash Savant, Tien-Wei Yu, Chia-Ming Tsai
  • Publication number: 20220352160
    Abstract: In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region made of a semiconductor material, a first work function adjustment material layer is formed over the gate dielectric layer, an adhesion enhancement layer is formed on the first work function adjustment material layer, a mask layer including an antireflective organic material layer is formed on the adhesion enhancement layer, and the adhesion enhancement layer and the first work function adjustment material layer are patterned by using the mask layer as an etching mask. The adhesion enhancement layer has a higher adhesion strength to the antireflective organic material layer than the first work function adjustment material layer.
    Type: Application
    Filed: July 14, 2022
    Publication date: November 3, 2022
    Inventors: Shahaji B. MORE, Chandrashekhar Prakash SAVANT, Tien-Wei YU, Chia-Ming TSAI
  • Publication number: 20220336289
    Abstract: A semiconductor device with different gate structure configurations and a method of fabricating the same are disclosed. The semiconductor device includes a fin structure disposed on a substrate, and first and second gate structures on the fin structure. The first and second gate structures includes first and second interfacial oxide layers, respectively, first and second high-K gate dielectric layers disposed on the first and second TO layers, respectively, and first and second dopant control layers disposed on the first and second HK gate dielectric layers, respectively. The second dopant control layer has a silicon-to-metal atomic concentration ratio greater than an Si-to-metal atomic concentration ratio of the first dopant control layer. The semiconductor further includes first and second work function metal layers disposed on the first and second dopant control layers, respectively, and first and second gate metal fill layers disposed on the first and second work function metal layers, respectively.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash Savant, Chia-Ming Tsai, Tien-Wei Yu
  • Publication number: 20220320320
    Abstract: A semiconductor device includes a substrate, a semiconductor fin, a gate structure, and source/drain structures. The semiconductor fin extends upwardly from the substrate. The gate structure is across the semiconductor fin and includes a high-k dielectric layer over the semiconductor fin, a fluorine-containing work function layer over the high-k dielectric layer and comprising fluorine, a tungsten-containing layer over the fluorine-containing work function layer, and a metal gate electrode over the tungsten-containing layer. The source/drain structures are on the semiconductor fin and at opposite sides of the gate structure.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chandrashekhar P. SAVANT, Tien-Wei YU, Ke-Chih LIU, Chia-Ming TSAI
  • Publication number: 20220285517
    Abstract: A semiconductor device includes a gate structure disposed over a channel region and a source/drain region. The gate structure includes a gate dielectric layer over the channel region, one or more work function adjustment material layers over the gate dielectric layer, and a metal gate electrode layer over the one or more work function adjustment material layers. The one or more work function adjustment layers includes an aluminum containing layer, and a diffusion barrier layer is disposed at at least one of a bottom portion and a top portion of the aluminum containing layer. The diffusion barrier layer is one or more of a Ti-rich layer, a Ti-doped layer, a Ta-rich layer, a Ta-doped layer and a Si-doped layer.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Shahaji B. MORE, Chandrashekhar Prakash SAVANT, Tien-Wei YU, Chia-Ming TSAI
  • Patent number: 11430700
    Abstract: The present disclosure describes a semiconductor device having metal boundary trench isolation with electrically conductive intermediate structures acting as a metal diffusion barrier. The semiconductor structure includes a first fin structure and a second fin structure on a substrate, an insulating layer between the first and second fin structures, a gate dielectric layer on the insulating layer and the first and second fin structures, and a first work function stack and a second work function stack on the gate dielectric layer. The first work function stack is over the first fin structure and a first portion of the insulating layer, and the second work function stack is over the second fin structure and a second portion of the insulating layer adjacent to the first portion. The semiconductor structure further includes a conductive intermediate structure on the gate dielectric layer and between the first and second work function stacks.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash Savant, Chia-Ming Tsai, Yuh-Ta Fan, Tien-Wei Yu
  • Patent number: 11417571
    Abstract: A semiconductor device with different gate structure configurations and a method of fabricating the same are disclosed. The semiconductor device includes a fin structure disposed on a substrate, and first and second gate structures on the fin structure. The first and second gate structures includes first and second interfacial oxide layers, respectively, first and second high-K gate dielectric layers disposed on the first and second IO layers, respectively, and first and second dopant control layers disposed on the first and second HK gate dielectric layers, respectively. The second dopant control layer has a silicon-to-metal atomic concentration ratio greater than an Si-to-metal atomic concentration ratio of the first dopant control layer. The semiconductor further includes first and second work function metal layers disposed on the first and second dopant control layers, respectively, and first and second gate metal fill layers disposed on the first and second work function metal layers, respectively.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 16, 2022
    Inventors: Chandrashekhar Prakash Savant, Chia-Ming Tsai, Tien-Wei Yu
  • Patent number: 11374114
    Abstract: A high-k dielectric layer is formed over a semiconductor substrate having a first trench and a second trench. A barrier layer is formed over the high-k dielectric layer. A work function layer is deposited over the barrier layer, and is patterned and removed from the second trench, exposing the barrier layer at the second trench. A precursor is deposited selectively over the barrier layer in the second trench, and deposited over the work function layer in the first trench. The precursor selectively reacts with the barrier layer to selectively etch the barrier layer, and selectively reacts with the work function layer to selectively etch a top oxidized portion of the work function layer and deposit a protective layer. The reaction products between the precursor and the barrier layer, and the reaction products between the precursor and the work function layer are removed by using an inert gas.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: June 28, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chandrashekhar P. Savant, Tien-Wei Yu, Ke-Chih Liu, Chia-Ming Tsai
  • Publication number: 20220181463
    Abstract: A device includes a semiconductor region, an interfacial layer over the semiconductor region, the interfacial layer including a semiconductor oxide, a high-k dielectric layer over the interfacial layer, and an intermixing layer over the high-k dielectric layer. The intermixing layer includes oxygen, a metal in the high-k dielectric layer, and an additional metal. A work-function layer is over the intermixing layer. A filling-metal region is over the work-function layer.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Tien-Wei Yu, Chia-Ming Tsai
  • Patent number: 11342434
    Abstract: A semiconductor device includes a gate structure disposed over a channel region and a source/drain region. The gate structure includes a gate dielectric layer over the channel region, one or more work function adjustment material layers over the gate dielectric layer, and a metal gate electrode layer over the one or more work function adjustment material layers. The one or more work function adjustment layers includes an aluminum containing layer, and a diffusion barrier layer is disposed at at least one of a bottom portion and a top portion of the aluminum containing layer. The diffusion barrier layer is one or more of a Ti-rich layer, a Ti-doped layer, a Ta-rich layer, a Ta-doped layer and a Si-doped layer.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Tien-Wei Yu, Chia-Ming Tsai