Patents by Inventor Timothy Christopher Golden

Timothy Christopher Golden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8940263
    Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: January 27, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
  • Publication number: 20140308176
    Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: Air Products and chemicals, Inc.
    Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
  • Patent number: 8814985
    Abstract: Composite adsorbent beads have a porous and non-adsorbent core comprising at least one inorganic material and a porous and adsorbent shell comprising at least one adsorbent layer comprising a porous adsorbent material on the surface of the core. The core preferably comprises agglomerated inorganic particles having a mean particle size equal to or smaller than the mean particle size of the surrounding agglomerated adsorbent particles. The beads preferably are manufactured by calcining together a non-sintered core and the adsorbent layer. The beads can be used at the outlet end of an adsorption column to improve performance.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: August 26, 2014
    Assignees: Glatt Systemtechnik GmbH, Air Products and Chemicals, Inc.
    Inventors: Almuth Gerds, Norman Reger-Wagner, Wolfgang Hungerbach, Constant Johan Van Lookeren, Roger Whitley, Jeffrey Raymond Hufton, Timothy Christopher Golden
  • Patent number: 8795411
    Abstract: Method for recovering a desired component from a waste gas comprising (a) at an operating facility, introducing a waste gas comprising the desired component and one or more undesired components into an adsorber containing adsorbent material selective for the desired component, adsorbing at least a portion of the desired component therein, (b) terminating flow of waste gas into the adsorber; and (c) recovering and concentrating the desired component by either (1) isolating the adsorber, transporting the adsorber to a central processing facility, or (2) withdrawing from the adsorber an intermediate gas enriched in the desired component, compressing the intermediate gas and storing it in a vessel, isolating the vessel, transporting the vessel to a central processing facility to provide a concentrated product further enriched in the desired component.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: August 5, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Thomas Stephen Farris, Timothy Christopher Golden, Eugene Joseph Karwacki, Jr.
  • Patent number: 8752390
    Abstract: Both power and H2 are produced from a gaseous mixture, comprising H2 and CO2, using first and second pressure swing adsorption (PSA) systems in series. The gaseous mixture is fed at super-atmospheric pressure to the first PSA system, which comprises adsorbent that selectively adsorbs CO2 at said pressure, and CO2 is adsorbed, thereby providing an H2-enriched mixture at super-atmospheric pressure. A fuel stream is formed from a portion of the H2-enriched mixture, which is combusted and the combustion effluent expanded to generate power. Another portion of the H2-enriched mixture is sent to the second PSA system, which comprises adsorbent that selectively adsorbs CO2 at super-atmospheric pressure, and CO2 is adsorbed, thereby providing a high purity H2 product. In preferred embodiments, the division of H2-enriched mixture between forming the fuel stream and being fed to the second PSA system is adjustable.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: June 17, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Jeffrey Raymond Hufton, Vincent White, Timothy Christopher Golden
  • Patent number: 8551229
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 8535414
    Abstract: The present invention discloses the improvements to a vacuum swing adsorption (VSA) process used for Xe recovery. By only collecting the recovered gas mixture after the initial evacuation of N2 from the adsorbent vessel and void space, the recovered Xe is not diluted by N2 contained in the adsorbent vessel and void space. The concentration of the recovered Xe can by increased (high purity), simultaneously little Xenon is lost. During the initial evacuation of N2, the vessel has been evacuated to a pressure less than 1 atmospheric pressure, for example, from 100 to 1 torr.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 17, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Johnson, Richard Vincent Pearce, Thomas Stephen Farris, Timothy Christopher Golden, Matthew John Bosco, Eugene Joseph Karwacki, Jr., David Charles Winchester, Jeffrey Raymond Hufton
  • Publication number: 20130186133
    Abstract: The invention provides systems and methods for separating ethane and heavier hydrocarbons from a natural gas stream. In aspects of the invention, an adsorption unit is integrated with a cryogenic gas processing plant in order to overcome methane recovery limitations by sending the tail gas from the adsorption unit to the cryogenic gas processing plant to recover methane that would otherwise be lost.
    Type: Application
    Filed: July 23, 2012
    Publication date: July 25, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jason Michael Ploeger, Timothy Christopher Golden, Jeffrey Raymond Hufton, John Eugene Palamara
  • Publication number: 20130125756
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 23, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Publication number: 20130019749
    Abstract: Method for recovering a desired component from a waste gas comprising (a) at an operating facility, introducing a waste gas comprising the desired component and one or more undesired components into an adsorber containing adsorbent material selective for the desired component, adsorbing at least a portion of the desired component therein, (b) terminating flow of waste gas into the adsorber; and (c) recovering and concentrating the desired component by either (1) isolating the adsorber, transporting the adsorber to a central processing facility, or (2) withdrawing from the adsorber an intermediate gas enriched in the desired component, compressing the intermediate gas and storing it in a vessel, isolating the vessel, transporting the vessel to a central processing facility to provide a concentrated product further enriched in the desired component.
    Type: Application
    Filed: January 26, 2012
    Publication date: January 24, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Thomas Stephen Farris, Timothy Christopher Golden, Eugene Joseph Karwacki, JR.
  • Patent number: 8323602
    Abstract: Carbon monoxide (CO) may be removed from flue gas generated by oxyfuel combustion of a hydrocarbon or carbonaceous fuel, by contacting the flue gas, or a CO-containing gas derived therefrom, at a first elevated temperature, e.g. at least 80° C., and at a first elevated pressure, e.g. at least 2 bar (0.2 MPa), with at least one catalyst bed comprising a CO-oxidation catalyst in the presence of oxygen (O2) to convert CO to carbon dioxide and produce carbon dioxide-enriched gas. The carbon dioxide produced from the CO may be recovered from the carbon dioxide-enriched gas using conventional carbon dioxide recovery techniques. NO in the flue gas may also be oxidized to nitrogen dioxide (NO2) and removed using conventional NO2 removal techniques, or may be reduced in the presence of a reducing gas to nitrogen (N2) which does not have to be removed from the gas.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 4, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Vincent White, Timothy Christopher Golden
  • Publication number: 20120152115
    Abstract: Composite adsorbent beads have a porous and non-adsorbent core comprising at least one inorganic material and a porous and adsorbent shell comprising at least one adsorbent layer comprising a porous adsorbent material on the surface of the core. The core preferably comprises agglomerated inorganic particles having a mean particle size equal to or smaller than the mean particle size of the surrounding agglomerated adsorbent particles. The beads preferably are manufactured by calcining together a non-sintered core and the adsorbent layer. The beads can be used at the outlet end of an adsorption column to improve performance.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 21, 2012
    Applicants: AIR PRODUCTS AND CHEMICALS, INC., GLATT SYSTEMTECHNIK GMBH
    Inventors: Almuth Gerds, Norman Reger-Wagner, Wolfgang Hungerbach, Constant Johan Van Lookeren, Roger Whitley, Jeffrey Raymond Hufton, Timothy Christopher Golden
  • Patent number: 8197580
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 12, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Publication number: 20120079939
    Abstract: The present invention discloses the improvements to a vacuum swing adsorption (VSA) process used for Xe recovery. By only collecting the recovered gas mixture after the initial evacuation of N2 from the adsorbent vessel and void space, the recovered Xe is not diluted by N2 contained in the adsorbent vessel and void space. The concentration of the recovered Xe can by increased (high purity), simultaneously little Xenon is lost. During the initial evacuation of N2, the vessel has been evacuated to a pressure less than 1 atmospheric pressure, for example, from 100 to 1 torr.
    Type: Application
    Filed: September 19, 2011
    Publication date: April 5, 2012
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Andrew David Johnson, Richard Vincent Pearce, Thomas Stephen Farris, Timothy Christopher Golden, Matthew John Bosco, Eugene Joseph Karwacki, JR., David Charles Winchester, Jeffrey Raymond Hufton
  • Publication number: 20120011856
    Abstract: Both power and H2 are produced from a gaseous mixture, comprising H2 and CO2, using first and second pressure swing adsorption (PSA) systems in series. The gaseous mixture is fed at super-atmospheric pressure to the first PSA system, which comprises adsorbent that selectively adsorbs CO2 at said pressure, and CO2 is adsorbed, thereby providing an H2-enriched mixture at super-atmospheric pressure. A fuel stream is formed from a portion of the H2-enriched mixture, which is combusted and the combustion effluent expanded to generate power. Another portion of the H2-enriched mixture is sent to the second PSA system, which comprises adsorbent that selectively adsorbs CO2 at super-atmospheric pressure, and CO2 is adsorbed, thereby providing a high purity H2 product. In preferred embodiments, the division of H2-enriched mixture between forming the fuel stream and being fed to the second PSA system is adjustable.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Andrew David Wright, Jeffrey Raymond Hufton, Vincent White, Timothy Christopher Golden
  • Publication number: 20120009109
    Abstract: Carbon monoxide (CO) may be removed from flue gas generated by oxyfuel combustion of a hydrocarbon or carbonaceous fuel, by contacting the flue gas, or a CO-containing gas derived therefrom, at a first elevated temperature, e.g. at least 80° C., and at a first elevated pressure, e.g. at least 2 bar (0.2 MPa), with at least one catalyst bed comprising a CO-oxidation catalyst in the presence of oxygen (O2) to convert CO to carbon dioxide and produce carbon dioxide-enriched gas. The carbon dioxide produced from the CO may be recovered from the carbon dioxide-enriched gas using conventional carbon dioxide recovery techniques. NO in the flue gas may also be oxidized to nitrogen dioxide (NO2) and removed using conventional NO2 removal techniques, or may be reduced in the presence of a reducing gas to nitrogen (N2) which does not have to be removed from the gas.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Andrew David Wright, Vincent White, Timothy Christopher Golden
  • Patent number: 8016918
    Abstract: Pressure swing adsorption process for producing oxygen comprising (a) providing at least one adsorber vessel having a first layer of adsorbent adjacent the feed end of the vessel and a second layer of adsorbent adjacent the first layer, wherein the surface area to volume ratio of the first layer is in the range of about 0.75 to about 1.8 cm?1; (b) introducing a pressurized feed gas comprising at least oxygen, nitrogen, and water into the feed end, adsorbing at least a portion of the water in the adsorbent in the first layer, and adsorbing at least a portion of the nitrogen in the adsorbent in the second layer, wherein the superficial contact time of the pressurized feed gas in the first layer is between about 0.08 and about 0.50 sec; and (c) withdrawing a product gas enriched in oxygen from the product end of the adsorber vessel.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: September 13, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Matthew James LaBuda, Timothy Christopher Golden, Roger Dean Whitley, Craig E. Steigerwalt
  • Patent number: 8012446
    Abstract: NO2 may be removed from a carbon dioxide feed gas comprising NOx and at least one “non-condensable” gas as contaminants by passing the feed gas at a first elevated pressure through a first adsorption system that selectively adsorbs at least NO2 to produce at least substantially NO2-free carbon dioxide gas. The adsorption system is at least partially regenerated using a carbon dioxide-rich gas recovered from the substantially NO2-free carbon dioxide gas after purification. The invention has particular application in removing NOx and water from flue gas generated by oxyfuel combustion.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 6, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Kevin Boyle Fogash, Vincent White, Jeffrey William Kloosterman, Timothy Christopher Golden, Paul Higginbotham
  • Publication number: 20110154989
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Patent number: 7909913
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: March 22, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen