Patents by Inventor Timothy Christopher Golden

Timothy Christopher Golden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6770390
    Abstract: The present invention is a method for production of a hydrogen-rich fuel gas compatible for a fuel cell, comprising; reforming a hydrocarbon-containing fuel to a CO-containing, hydrogen-rich reformate, converting CO in the reformate to CO2 and hydrogen by a catalyzed water-shift reaction, removing residual CO in the reformate by adsorption on a copper halide adsorbent, and passing the essentially CO-free reformate as a hydrogen-rich fuel gas to a fuel cell.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: August 3, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr.
  • Patent number: 6719827
    Abstract: The present invention relates to a process and apparatus for the removal of nitrous oxide from a feed gas stream using an adsorbent having a nitrogen diffusion parameter of 0.12 sec−1 or higher and a nitrous oxide capacity of 79 mmol/g/atm or higher at 30° C.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: April 13, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Patent number: 6706857
    Abstract: In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: March 16, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr., Charles Henry Johnson
  • Publication number: 20040045434
    Abstract: A process for removing at least water and carbon dioxide from a feed gas stream of air, synthesis gas or natural gas is described, comprising the steps of: contacting the feed gas stream with a composite adsorbent comprising silica and metal oxide, wherein the composite adsorbent contains at least 50 wt % silica, to form a first purified gas stream, and regenerating the composite adsorbent at a temperature of 0 to 200° C. The process optionally further comprises contacting the first purified gas stream with a carbon dioxide adsorbent and/or a nitrous oxide or hydrocarbon adsorbent.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 11, 2004
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Patent number: 6669760
    Abstract: This invention relates to an improvement in a process for removing C2F6 as an impurity from a CF4 containing gas, preferably CF4 produced by the reaction of F2 with carbon. The improvement in the process comprises the steps: contacting the CF4 containing gas, containing C2F6 impurity, with an activated carbon having a CCl4 activity from 43 to 55 in an adsorption bed to effect adsorption of the C2F6 impurity; and, recovering purified CF4 product in the effluent from the adsorbent bed.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: December 30, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Philip Bruce Henderson, Timothy Christopher Golden
  • Patent number: 6660064
    Abstract: A pressure swing adsorption process for recovering a product gas from a feed gas, includes: supplying a pressure swing adsorption apparatus including an adsorbent composition containing activated carbon as a major ingredient, wherein the adsorbent composition and the apparatus are substantially free of zeolite adsorbents; feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 20 seconds; and recovering the product gas from the pressure swing adsorption apparatus. The process and apparatus are particularly suitable for use with fuel cells and other applications requiring compact, rapid cycling systems for producing high purity hydrogen.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: December 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist
  • Patent number: 6658894
    Abstract: Xenon and/or krypton are recovered from oxygen containing gas, typically derived from liquid oxygen bottoms in a cryogenic air separation plant, by selective adsorption on a Li and Ag exchange zeolite containing 5 to 40% Ag exchange capacity on an equivalents basis, with periodic thermal regeneration of the adsorbent.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: December 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Thomas Stephen Farris, Robert Ling Chiang, Roger Dean Whitley, Fred William Taylor
  • Publication number: 20030221555
    Abstract: A process for removing at least water and carbon dioxide from a feed gas stream of air, synthesis gas or natural gas is described, comprising the steps of:
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Publication number: 20030205131
    Abstract: A gas adsorption composite a high density adsorbent including a high density layer having a first density of at least 0.3 g/cc; and a low density adsorbent having a low density layer having a second density of less than 0.3 g/cc, wherein the high density adsorbent is in substantially contiguous contact with the low density adsorbent and each of the high density adsorbent and the low density adsorbent has an adsorbent surface area of at least 500 m2/g. A pressure swing adsorption process for recovering a product gas from a feed gas, said process including supplying a pressure swing adsorption apparatus comprising a gas adsorption composite, feeding a feed gas into said pressure swing adsorption apparatus during a feed period not exceeding 100 seconds and recovering said product gas from said pressure swing adsorption apparatus.
    Type: Application
    Filed: April 3, 2003
    Publication date: November 6, 2003
    Inventors: Catherine Marie Anne Golden, Timothy Christopher Golden, Paula Jean Battavio
  • Publication number: 20030176634
    Abstract: In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 18, 2003
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Charles Henry Johnson
  • Publication number: 20030167921
    Abstract: A pressure swing adsorption process for recovering a product gas from a feed gas, includes: supplying a pressure swing adsorption apparatus including an adsorbent composition containing activated carbon as a major ingredient, wherein the adsorbent composition and said apparatus are substantially free of zeolite adsorbents; feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 20 seconds; and recovering the product gas from the pressure swing adsorption apparatus. The process and apparatus are particularly suitable for use with fuel cells and other applications requiring compact, rapid cycling systems for producing high purity hydrogen.
    Type: Application
    Filed: March 8, 2002
    Publication date: September 11, 2003
    Inventors: Timothy Christopher Golden, Edward Landis Weist
  • Publication number: 20030164092
    Abstract: The present invention relates to a process and apparatus for the removal of nitrous oxide from a feed gas stream using an adsorbent having a nitrogen diffusion parameter of 0.12 sec−1 or higher and a nitrous oxide capacity of 79 mmol/g/atm or higher at 30° C.
    Type: Application
    Filed: March 1, 2002
    Publication date: September 4, 2003
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Patent number: 6605136
    Abstract: A pressure swing adsorption process which comprises introducing a feed gas mixture into an inlet of an adsorber vessel during a feed period, wherein the feed gas mixture contains a more strongly adsorbable component and a less strongly adsorbable component and the adsorber vessel contains a bed of adsorbent material which selectively adsorbs the more strongly adsorbable component, and withdrawing a product gas enriched in the less strongly adsorbable component from an outlet of the adsorber vessel during at least a portion of the feed period, wherein a dimensionless cycle-compensated mass transfer coefficient defined as K tfeedVads/Vfeed is maintained in the range of about 23 to about 250.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: August 12, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Ross Graham, Roger Dean Whitley, Robert Ling Chiang, Edward Landis Weist, Jr., Timothy Christopher Golden, Matthew James Labuda
  • Publication number: 20030106335
    Abstract: Xenon and/or krypton are recovered from oxygen containing gas, typically derived from liquid oxygen bottoms in a cryogenic air separation plant, by selective adsorption on a Li and Ag exchange zeolite containing 5 to 40% Ag exchange capacity on an equivalents basis, with periodic thermal regeneration of the adsorbent.
    Type: Application
    Filed: July 29, 2002
    Publication date: June 12, 2003
    Inventors: Timothy Christopher Golden, Thomas Stephen Farris, Robert Ling Chiang, Roger Dean Whitley, Fred William Taylor
  • Patent number: 6576043
    Abstract: A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60° F. to about 105° F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: June 10, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Daniel Patrick Zwilling, Timothy Christopher Golden, Edward Landis Weist, Jr., Keith Alan Ludwig
  • Patent number: 6572681
    Abstract: Carbon monoxide (CO) is removed from a nitrogen and CO containing gas stream such as feed air to an air separation process for recovery of a nitrogen product gas stream or a nitrogen product gas stream from an air separation process by adsorbing CO from said gas stream before or after separation of oxygen from said gas stream to produce a product gas stream containing less than 5 ppb of CO by contacting said gas stream With a solid adsorbent such as a Mn, Fe, Ni, Cu, Ag, Pd, Co, Pt or Au exchanged zeolite and periodically regenerating the adsorbent by desorption of CO therefrom under a flow of regenerating gas, and, if said gas stream is said feed air, separating oxygen therefrom to produce said nitrogen product.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: June 3, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Alexander Schwarz, Thomas Hsiao-Ling Hsiung, Fred William Taylor
  • Patent number: 6565627
    Abstract: A rapid pressure swing adsorption (RPSA) process includes the use of an adsorbent fabric. The fabric can be self-supporting, have an average pore diameter greater than 5 Å and/or have a carbon dioxide mass transfer coefficient of at least 0.5 sec−1. Activated carbon cloths can be suitable for use as the adsorbent fabric. The process can be used to prepare high purity hydrogen and other products. Systems including the adsorbent fabric outperform systems lacking such fabrics in RPSA applications.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: May 20, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Catherine Marie Anne Golden, Daniel Patrick Zwilling
  • Publication number: 20030073788
    Abstract: In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Charles Henry Johnson
  • Publication number: 20030070546
    Abstract: A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60° F. to about 105° F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Inventors: Daniel Patrick Zwilling, Timothy Christopher Golden, Edward Landis Weist, Keith Alan Ludwig
  • Publication number: 20030029315
    Abstract: The present invention describes a pressure swing adsorption (PSA) apparatus and process for the production of purified hydrogen from a feed gas stream containing heavy hydrocarbons (i.e., hydrocarbons having at least six carbons). The apparatus comprises at least one bed containing at least three layers. The layered adsorption zone contains a feed end with a low surface area adsorbent (20 to 400 m2/g) which comprises 2 to 20% of the total bed length followed by a layer of an intermediate surface area adsorbent (425 to 800 m2/g) which comprises 25 to 40% of the total bed length and a final layer of high surface area adsorbent (825 to 2000 m2/g) which comprises 40 to 78% of the total bed length.
    Type: Application
    Filed: October 8, 2002
    Publication date: February 13, 2003
    Inventors: Timothy Christopher Golden, Edward Landis Weist