Patents by Inventor Timothy Coleman

Timothy Coleman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6949372
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: September 27, 2005
    Assignees: The Johns Hopkins University, Human Genome Sciences, Inc.
    Inventors: Michael J. Betenbaugh, Shawn Lawrence, Yuan C. Lee, Timothy A. Coleman
  • Publication number: 20050153331
    Abstract: The present invention relates to novel human glycosylation enzyme polypeptides and isolated nucleic acids containing the coding regions of the genes encoding such polypeptides. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human glycosylation enzyme polypeptides. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human glycosylation enzyme polypeptides.
    Type: Application
    Filed: December 1, 2004
    Publication date: July 14, 2005
    Applicants: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Timothy Coleman, Michael Betenbaugh
  • Patent number: 6916786
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: July 12, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Publication number: 20050148028
    Abstract: The present invention provides soluble forms of integral membrane proteins, or domains or portions thereof, that retain the biological activity of the integral membrane protein, domain or portion from which they are designed or derived and that can readily be expressed in high yield.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 7, 2005
    Applicant: Human Genome Sciences, Inc.
    Inventors: Timothy Coleman, Brian Mansfield
  • Patent number: 6903072
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: June 7, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Patent number: 6872548
    Abstract: The present invention provides soluble forms of integral membrane proteins, or domains or portions thereof, that retain the biological activity of the integral membrane protein, domain or portion from which they are designed or derived and that can readily be expressed in high yield.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: March 29, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Timothy A. Coleman, Brian C. Mansfield
  • Patent number: 6864226
    Abstract: A human EMAP III polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for preventing and/or treating neoplasia. Diagnostic assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention for detecting diseases, for example, cancer, are also disclosed.
    Type: Grant
    Filed: November 18, 1997
    Date of Patent: March 8, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Timothy A. Coleman, Craig A. Rosen
  • Publication number: 20050048616
    Abstract: A human EMAP III polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for preventing and/or treating neoplasia. Diagnostic assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention for detecting diseases, for example, cancer, are also disclosed.
    Type: Application
    Filed: August 4, 2004
    Publication date: March 3, 2005
    Applicant: Human Genome Sciences, Inc.
    Inventors: Timothy Coleman, Craig Rosen
  • Patent number: 6858415
    Abstract: The present invention relates to novel human glycosylation enzyme polypeptides and isolated nucleic acids containing the coding regions of the genes encoding such polypeptides. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human glycosylation enzyme polypeptides. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human glycosylation enzyme polypeptides.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: February 22, 2005
    Assignees: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Timothy A. Coleman, Michael J. Betenbaugh
  • Publication number: 20050037966
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 17, 2005
    Applicant: Human Genome Sciences, Inc.
    Inventors: Steven Ruben, Pablo Jimenez, Roxanne Duan, Mark Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul Moore, Timothy Coleman, Joachim Gruber, Patrick Dillon, Reiner Gentz
  • Publication number: 20040224387
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: December 12, 2003
    Publication date: November 11, 2004
    Applicant: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Publication number: 20040203101
    Abstract: The present invention relates to a novel BAIT protein which is a member of serpin superfamily which is expressed primarily in brain tissue. In particular, isolated nucleic acid molecules are provided encoding the human and recombinant methods for producing the same. The invention further relates to screening methods for identifying agonists and antagonists of BAIT activity. Also provided are diagnostic methods for detecting nervous system-related disorders and therapeutic methods for treating nervous system-related disorders. Additionally, the present invention is related to methods of treating patients with BAIT polynucleotides or polypeptides, wherein said patients have had seizures or epilepsy.
    Type: Application
    Filed: January 7, 2004
    Publication date: October 14, 2004
    Applicants: Human Genome Sciences, Inc., The American Red Cross
    Inventors: Gregg A. Hastings, Timothy A. Coleman, Patrick J. Dillon, Daniel A. Lawrence, Maria Sandkvist, Manuel Yepes, Michael K. K. Wong
  • Patent number: 6783971
    Abstract: The present invention relates to novel human glycosylation enzyme polypeptides and isolated nucleic acids containing the coding regions of the genes encoding such polypeptides. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human glycosylation enzyme polypeptides. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human glycosylation enzyme polypeptides.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: August 31, 2004
    Assignees: Human Genome Sciences, Inc., The Johns Hopkins University
    Inventors: Timothy A. Coleman, Michael J. Betenbaugh
  • Publication number: 20040142442
    Abstract: The present invention relates to novel human glycosylation enzyme polypeptides and isolated nucleic acids containing the coding regions of the genes encoding such polypeptides. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human glycosylation enzyme polypeptides. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human glycosylation enzyme polypeptides.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 22, 2004
    Applicants: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Timothy A. Coleman, Michael J. Betenbaugh
  • Publication number: 20040086967
    Abstract: A human Criptin Growth Factor polypeptide (CGF) and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for wound healing or tissue regeneration, stimulating implant fixation and angiogenesis. Antagonist against such polypeptides and their use as a therapeutic to treat and/or prevent neoplasia such as tumors is also disclosed. Diagnostic assays for identifying mutations in CGF nucleic acid sequences and altered levels of the CGF for the detection of cancer are also disclosed.
    Type: Application
    Filed: September 22, 2003
    Publication date: May 6, 2004
    Applicant: Human Genome Sciences, Inc.
    Inventors: Paul S. Meissner, Timothy A. Coleman
  • Publication number: 20040058372
    Abstract: The invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method permits monitoring of an entire system for obtaining spectral data from biological samples. Generally, the method includes generating a bioassay process model, comparing a test sample against the bioassay process model. The bioassay process model may be based on the position of a centroid in n-dimensional space. The comparing may include comparing the location of a centroid associated with the test model against the centroid associated with the control model to determine the distance between the two centroids. By generating a trend plot of the distance between the centroid associated with the test sample and the centroid associated with the control model, overall system performance may be monitored over time.
    Type: Application
    Filed: July 28, 2003
    Publication date: March 25, 2004
    Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman
  • Publication number: 20040053333
    Abstract: The present invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method includes generating a bioassay process model, and then comparing spectral data based on a combination of a biochip and a test serum to the bioassay process model to determine if the test sample and the bioassay process are producing acceptable data. Alternatively, the method may include comparing spectral data based on a combination of serum and diluents used in an electrospray process to the bioassay process model. If the bioassay process and test sample fall within the model, then the spectrum produced may be further analyzed.
    Type: Application
    Filed: July 28, 2003
    Publication date: March 18, 2004
    Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman
  • Publication number: 20040038880
    Abstract: The present invention relates to a novel BAIT protein which is a member of serpin superfamily which is expressed primarily in brain tissue. In particular, isolated nucleic acid molecules are provided encoding the human and recombinant methods for producing the same. The invention further relates to screening methods for identifying agonists and antagonists of BAIT activity. Also provided are diagnostic methods for detecting nervous system-related disorders and therapeutic methods for treating nervous system-related disorders. Additionally, the present invention is related to methods of treating patients with BAIT polynucleotides or polypeptides, wherein said patients have had a stroke.
    Type: Application
    Filed: January 31, 2003
    Publication date: February 26, 2004
    Applicants: Human Genome Sciences, Inc., The American Red Cross
    Inventors: Daniel A. Lawrence, Manuel Yepes, Maria Sandkvist, Timothy A. Coleman, Michael K.K. Wong
  • Patent number: 6693077
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: February 17, 2004
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian NI, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Publication number: 20030215921
    Abstract: Disclosed are human VEGF-2 polypeptides, biologically active, diagnostically or therapeutically useful fragments, analogs, or derivatives thereof, and DNA(RNA) encoding such VEGF-2 polypeptides. Also provided are procedures for producing such polypeptides by recombinant techniques and antibodies and antagonists against such polypeptides. Such polypeptides and polynucleotides may be used therapeutically for stimulating wound healing and for vascular tissue repair. Also provided are methods of using the antibodies and antagonists to inhibit tumor angiogenesis and thus tumor growth, inflammation, diabetic retinopathy, rheumatoid arthritis, and psoriasis.
    Type: Application
    Filed: August 3, 2001
    Publication date: November 20, 2003
    Inventor: Timothy Coleman