Patents by Inventor Timothy H. Daubenspeck

Timothy H. Daubenspeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9159696
    Abstract: Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. A via opening extends through the passivation layer from a top surface of the passivation layer to a metal line in the dielectric layer. A mask on the top surface of the passivation layer includes a mask opening that is aligned with the via opening. A conductive layer is selectively formed in the via opening and the mask opening. The conductive layer projects above the top surface of the passivation layer. The method further includes planarizing the passivation layer and the conductive layer to define a plug in the via opening that is coupled with the metal line.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 13, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Ekta Misra, Christopher D. Muzzy, Wolfgang Sauter
  • Patent number: 9087754
    Abstract: Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: July 21, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 9059106
    Abstract: Structures and methods of making a flip chip package that employ polyimide pads of varying heights at a radial distance from a center of an integrated circuit (IC) chip for a flip chip package. The polyimide pads may be formed under electrical connectors, which connect the IC chip to a chip carrier of the flip chip package, so that electrical connectors formed on polyimide pads of greater height are disposed at a greater radial distance from the center of the IC chip, while electrical connectors formed on polyimide pads of a lesser height are disposed more proximately to the center of the IC chip. Electrical connectors of a greater relative height to the IC chip's surface may compensate for a gap, produced by heat-induced warpage during the making of the flip chip package, that separates the electrical connectors on the IC chip from flip chip attaches on the chip carrier.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 9040390
    Abstract: A releasable buried layer for 3-D fabrication and methods of manufacturing is disclosed. The method includes forming an interposer structure which includes forming a carbon rich dielectric releasable layer over a wafer. The method further includes forming back end of the line (BEOL) layers over the carbon rich dielectric layer, including wiring layers and solder bumps. The method further includes bonding the solder bumps to a substrate using flip chip processes. The flip chip processes comprises reflowing the solder bumps and rapidly cooling down the solder bumps which releases the carbon rich dielectric releasable layer from the wafer.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 26, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Steven E. Molis, Gordon C. Osborne, Jr., Wolfgang Sauter, Edmund J. Sprogis
  • Patent number: 9035459
    Abstract: Interconnect structures and methods of fabricating the same are provided. The interconnect structures provide highly reliable copper interconnect structures for improving current carrying capabilities (e.g., current spreading). The structure includes an under bump metallurgy formed in a trench. The under bump metallurgy includes at least: an adhesion layer; a plated barrier layer; and a plated conductive metal layer provided between the adhesion layer and the plated barrier layer. The structure further includes a solder bump formed on the under bump metallurgy.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Harry D. Cox, Timothy H. Daubenspeck, Krystyna W. Semkow, Timothy D. Sullivan
  • Patent number: 9018760
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Publication number: 20150108645
    Abstract: A method including forming a first dielectric layer above a conductive pad and above a metallic structure, the conductive pad and the metallic structure are each located within an interconnect level above a substrate, forming a first opening and a second opening in the first dielectric layer, the first opening is aligned with and exposes the conductive pad and the second opening is aligned with and exposes the metallic structure, and forming a metallic liner on the conductive pad, on the metallic structure, and above the first dielectric layer. The method may further include forming a second dielectric layer above the metallic liner, and forming a third dielectric layer above the second dielectric layer, the third dielectric layer is thicker than either the first dielectric layer or the second dielectric layer.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter
  • Publication number: 20150108642
    Abstract: A spacer structure formed adjacent a solder connection which prevents solder extrusion and methods of manufacture are disclosed. The method includes forming a solder preform connection on a bond pad of a chip. The method further includes forming a spacer structure on sidewalls of the solder preform connection. The method further includes subjecting the solder preform connection to a predetermined temperature to form a solder connection with the spacer structure remaining thereabout.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Publication number: 20150097283
    Abstract: Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. Via openings extend through the passivation layer from a top surface of the passivation layer to a metal line in the passivation layer. A conductive layer is formed on the top surface of the passivation layer and within each via opening. When the passivation layer and the conductive layer are planarized, a plug is formed that includes sections in the via openings. Each section is coupled with the metal line.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Applicant: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Ekta Misra, Christopher D. Muzzy, Wolfgang Sauter
  • Patent number: 9000585
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a dielectric material formed between a design sensitive structure and a passivation layer. The design sensitive structure comprising a lower wiring layer electrically and mechanically connected to a higher wiring level by a via farm. A method and structure is also provided.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Jeffrey S. Zimmerman
  • Patent number: 8994173
    Abstract: A layer of material can protect a surface of a passivation layer against damage during a final via plug process. The protective layer can be a conductive bump limiting metallurgy (BLM) base layer and can include titanium tungsten (TiW), though other materials can be employed. Examples include applying the protective layer after formation of a via opening and prior to formation of a via opening, and can include applying more protective material after conductor plug formation to enhance protection. Photosensitive and non-photosensitive passivation layers can be so protected.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter
  • Publication number: 20150076688
    Abstract: Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. A via opening extends through the passivation layer from a top surface of the passivation layer to a metal line in the dielectric layer. A mask on the top surface of the passivation layer includes a mask opening that is aligned with the via opening. A conductive layer is selectively formed in the via opening and the mask opening. The conductive layer projects above the top surface of the passivation layer. The method further includes planarizing the passivation layer and the conductive layer to define a plug in the via opening that is coupled with the metal line.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Ekta Misra, Christopher D. Muzzy, Wolfgang Sauter
  • Publication number: 20150048502
    Abstract: “Thick line dies” that, during manufacture, avoid locating an upstanding edge of a photoresist layer (for example, the edge of a dry film photoresist layer) on top of a “discontinuity.” In this way solder does not flow into the mechanical interface between the photoresist layer and the layer under the photoresist layer in the vicinity of an upstanding edge of the photoresist layer.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8957531
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
  • Publication number: 20150044864
    Abstract: Structures and methods of making a flip chip package that employ polyimide pads of varying heights at a radial distance from a center of an integrated circuit (IC) chip for a flip chip package. The polyimide pads may be formed under electrical connectors, which connect the IC chip to a chip carrier of the flip chip package, so that electrical connectors formed on polyimide pads of greater height are disposed at a greater radial distance from the center of the IC chip, while electrical connectors formed on polyimide pads of a lesser height are disposed more proximately to the center of the IC chip. Electrical connectors of a greater relative height to the IC chip's surface may compensate for a gap, produced by heat-induced warpage during the making of the flip chip package, that separates the electrical connectors on the IC chip from flip chip attaches on the chip carrier.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Publication number: 20150041977
    Abstract: Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Timothy H. DAUBENSPECK, Jeffrey P. GAMBINO, Christopher D. MUZZY, Wolfgang SAUTER, Timothy D. SULLIVAN
  • Publication number: 20150036716
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
  • Publication number: 20150037971
    Abstract: Chip connection structures and related methods of forming such structures are disclosed. In one case, an interconnect structure is disclosed, the structure including: a pillar connecting an integrated circuit chip and a substrate, the pillar including a barrier layer, a first copper layer over the barrier layer, and a first solder layer over the first copper layer.
    Type: Application
    Filed: October 9, 2014
    Publication date: February 5, 2015
    Inventors: Charles L. Arvin, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang W. Sauter, Timothy D. Sullivan
  • Publication number: 20150021793
    Abstract: Wire-bonded semiconductor structures using organic insulating material and methods of manufacture are disclosed. The method includes forming a metal wiring layer in an organic insulator layer. The method further includes forming a protective layer over the organic insulator layer. The method further includes forming a via in the organic insulator layer over the metal wiring layer. The method further includes depositing a metal layer in the via and on the protective layer. The method further includes patterning the metal layer with an etch chemistry that is damaging to the organic insulator layer.
    Type: Application
    Filed: October 10, 2014
    Publication date: January 22, 2015
    Inventors: Timothy H. DAUBENSPECK, Jeffrey P. GAMBINO, Zhong-Xiang HE, Christopher D. MUZZY, Wolfgang SAUTER, Timothy D. SULLIVAN
  • Patent number: 8937009
    Abstract: Disclosed are a method for metallization during semiconductor wafer processing and the resulting structures. In this method, a passivation layer is patterned with first openings aligned above and extending vertically to metal structures below. A mask layer is formed and patterned with second openings aligned above the first openings, thereby forming two-tier openings extending vertically through the mask layer and passivation layer to the metal structures below. An electrodeposition process forms, in the two-tier openings, both under-bump pad(s) and additional metal feature(s), which are different from the under-bump pad(s) (e.g., a wirebond pad; a final vertical section of a crackstop structure; and/or a probe pad). Each under-bump pad and additional metal feature initially comprises copper with metal cap layers thereon.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Karen P. McLaughlin, Ekta Misra, Christopher D. Muzzy, Eric D. Perfecto, Wolfgang Sauter