Patents by Inventor Timothy N. Thomas

Timothy N. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8363320
    Abstract: A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. The techniques and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Timothy N. Thomas, Stephen Moffatt, Jiping Li, Bruce E. Adams, Samuel C. Howells
  • Patent number: 8288683
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: October 16, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P. S. Thakur
  • Patent number: 8232503
    Abstract: In a laser annealing system for workpieces such as semiconductor wafers, a pyrometer wavelength response band is established within a narrow window lying between the laser emission band and a fluorescence emission band from the optical components of the laser system, the pyrometer response band lying in a wavelength region at which the optical absorber layer on the workpiece has an optical absorption coefficient as great as or greater than the underlying workpiece. A multi-layer razor-edge interference filter having a 5-8 nm wavelength cut-off edge transition provides the cut-off of the laser emission at the bottom end of the pyrometer response band.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: July 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jiping Li, Bruce E. Adams, Timothy N. Thomas, Aaron Muir Hunter, Abhilash J. Mayur, Rajesh S. Ramanujam
  • Publication number: 20120148701
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 14, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Bruce E. Adams, Samuel C. Howells, Dean Jennings, Jiping Li, Timothy N. Thomas, Stephen Moffatt
  • Publication number: 20120145684
    Abstract: Methods used to perform an annealing process on desired regions of a substrate are disclosed. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps (e.g., crystal damage from implant processes), more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 14, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Paul Carey, Aaron Muir Hunter, Dean Jennings, Abhilash J. Mayur, Stephen Moffatt, William Schaffer, Timothy N. Thomas, Mark Yam
  • Patent number: 8148663
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Samuel C. Howells, Dean Jennings, Jiping Li, Timothy N. Thomas, Stephen Moffatt
  • Publication number: 20110199683
    Abstract: A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. The techniques and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 18, 2011
    Inventors: Dean Jennings, Timothy N. Thomas, Stephen Moffatt, Jiping Li, Bruce E. Adams, Samuel C. Howells
  • Patent number: 7923660
    Abstract: Disclosed is the method and apparatus for annealing semiconductor substrates. One embodiment provides a semiconductor processing chamber comprising a first substrate support configured to support a substrate, a second substrate support configured to support a substrate, a shuttle coupled to the first substrate support and configured to move the first substrate support between a processing zone and a first loading zone, wherein the processing zone having a processing volume configured to alternately accommodating the first substrate support and the second substrate support.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Timothy N. Thomas, Sundar Ramamurthy
  • Patent number: 7910499
    Abstract: Apparatus for thermally processing a substrate includes a source of laser radiation comprising a plurality diode lasers arranged along a slow axis, optics directing the laser radiation from the source to the substrate, and an array of photodetectors arranged along a fast axis perpendicular to the slow axis and receiving portions of the laser radiation reflected from the substrate through the optics.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: March 22, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Timothy N. Thomas
  • Publication number: 20110006044
    Abstract: In a laser annealing system for workpieces such as semiconductor wafers, a pyrometer wavelength response band is established within a narrow window lying between the laser emission band and a fluorescence emission band from the optical components of the laser system, the pyrometer response band lying in a wavelength region at which the optical absorber layer on the workpiece has an optical absorption coefficient as great as or greater than the underlying workpiece. A multi-layer razor-edge interference filter having a 5-8 nm wavelength cut-off edge transition provides the cut-off of the laser emission at the bottom end of the pyrometer response band.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Inventors: Jiping Li, Bruce E. Adams, Timothy N. Thomas, Aaron Muir Hunter, Abhilash J. Mayur, Rajesh S. Ramanujam
  • Publication number: 20100323532
    Abstract: The present invention generally describes one ore more methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps (e.g., crystal damage from implant processes), more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 23, 2010
    Inventors: Paul Carey, Aaron Muir Hunter, Dean Jennings, Abhilash J. Mayur, Stephen Moffatt, William Schaffer, Timothy N. Thomas, Mark Yam
  • Patent number: 7837357
    Abstract: An illumination system has a light source, an optical train, and a wavelength beam splitter. The optical train focuses light from the light source into a defined geometrical pattern on a surface. The wavelength beam splitter transmits light of a first wavelength and redirects light of a second wavelength. One of these wavelengths is included by the light from the light source, while the other is an emission wavelength generated by thermal excitation of the surface by the focused geometrical pattern.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Timothy N. Thomas
  • Publication number: 20100266268
    Abstract: Substrate processing equipment and methods are used to improve the uniformity of illumination across an illuminated portion of a substrate by processing light with multiple optical homogenizers. The multiple optical homogenizers each include micro-lens arrays and Fourier lens. The multiple optical homogenizers are arranged so that the output numerical aperture of one of the optical homogenizers is within 5% of the input numerical aperture of another optical homogenizer.
    Type: Application
    Filed: April 18, 2010
    Publication date: October 21, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Timothy N. Thomas, Samuel C. Howells, Bruce E. Adams, Jiping Li
  • Patent number: 7804042
    Abstract: In a laser annealing system for workpieces such as semiconductor wafers, a pyrometer wavelength response band is established within a narrow window lying between the laser emission band and a fluorescence emission band from the optical components of the laser system, the pyrometer response band lying in a wavelength region at which the optical absorber layer on the workpiece has an optical absorption coefficient as great as or greater than the underlying workpiece. A multi-layer razor-edge interference filter having a 5-8 nm wavelength cut-off edge transition provides the cut-off of the laser emission at the bottom end of the pyrometer response band.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: September 28, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jiping Li, Bruce E. Adams, Timothy N. Thomas, Aaron Muir Hunter, Abhilash J. Mayur, Rajesh S. Ramanujam
  • Patent number: 7795816
    Abstract: A laser beam is modulated at a very high frequency to produce uniform radiant flux densities on substrate surface processing regions during thermal processing. Beam modulation is achieved by passing the laser beam through a plasma which causes phase randomization within the laser beam. This method may be used for any application where intense, uniform illumination is desired, such as pulsed laser annealing, ablating, and wafer stepper illuminating.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: September 14, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Bruce E. Adams, Timothy N. Thomas, Stephen Moffatt
  • Patent number: 7717617
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7674999
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P. S. Thakur
  • Publication number: 20090236495
    Abstract: Apparatus for thermally processing a substrate includes a source of laser radiation comprising a plurality diode lasers arranged along a slow axis, optics directing the laser radiation from the source to the substrate, and an array of photodetectors arranged along a fast axis perpendicular to the slow axis and receiving portions of the laser radiation reflected from the substrate through the optics.
    Type: Application
    Filed: May 14, 2009
    Publication date: September 24, 2009
    Inventors: DEAN JENNINGS, TIMOTHY N. THOMAS
  • Publication number: 20090152247
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Application
    Filed: November 4, 2008
    Publication date: June 18, 2009
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P.S. Thakur
  • Publication number: 20090091817
    Abstract: A laser beam is modulated at a very high frequency to produce uniform radiant flux densities on substrate surface processing regions during thermal processing. Beam modulation is achieved by passing the laser beam through a plasma which causes phase randomization within the laser beam. This method may be used for any application where intense, uniform illumination is desired, such as pulsed laser annealing, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: October 8, 2007
    Publication date: April 9, 2009
    Inventors: Dean Jennings, Bruce E. Adams, Timothy N. Thomas, Stephen Moffatt